KIR3DL2

Revision as of 18:51, 4 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2
Identifiers
Symbols KIR3DL2 ; CD158K; CL-5; MGC125321; NKAT4; NKAT4A; NKAT4B
External IDs Template:OMIM5 HomoloGene88746
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

Killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2, also known as KIR3DL2, is a human gene.[1] Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes.[1]

See also

References

  1. 1.0 1.1 "Entrez Gene: KIR3DL2 killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2".

Further reading

  • Colonna M, Samaridis J (1995). "Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells". Science. 268 (5209): 405–8. PMID 7716543.
  • Wagtmann N, Biassoni R, Cantoni C; et al. (1995). "Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains". Immunity. 2 (5): 439–49. PMID 7749980.
  • Döhring C, Scheidegger D, Samaridis J; et al. (1996). "A human killer inhibitory receptor specific for HLA-A1,2". J. Immunol. 156 (9): 3098–101. PMID 8617928.
  • Döhring C, Samaridis J, Colonna M (1996). "Alternatively spliced forms of human killer inhibitory receptors". Immunogenetics. 44 (3): 227–30. PMID 8662091.
  • Pende D, Biassoni R, Cantoni C; et al. (1996). "The natural killer cell receptor specific for HLA-A allotypes: a novel member of the p58/p70 family of inhibitory receptors that is characterized by three immunoglobulin-like domains and is expressed as a 140-kD disulphide-linked dimer". J. Exp. Med. 184 (2): 505–18. PMID 8760804.
  • Wagtmann N, Rajagopalan S, Winter CC; et al. (1996). "Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer". Immunity. 3 (6): 801–9. PMID 8777725.
  • Uhrberg M, Valiante NM, Shum BP; et al. (1998). "Human diversity in killer cell inhibitory receptor genes". Immunity. 7 (6): 753–63. PMID 9430221.
  • Kwon D, Chwae YJ, Choi IH; et al. (2000). "Diversity of the p70 killer cell inhibitory receptor (KIR3DL) family members in a single individual". Mol. Cells. 10 (1): 54–60. PMID 10774747.
  • Goodier MR, Londei M (2000). "Lipopolysaccharide stimulates the proliferation of human CD56+CD3- NK cells: a regulatory role of monocytes and IL-10". J. Immunol. 165 (1): 139–47. PMID 10861046.
  • Gardiner CM, Guethlein LA, Shilling HG; et al. (2001). "Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism". J. Immunol. 166 (5): 2992–3001. PMID 11207248.
  • Shilling HG, Guethlein LA, Cheng NW; et al. (2002). "Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype". J. Immunol. 168 (5): 2307–15. PMID 11859120.
  • Strausberg RL, Feingold EA, Grouse LH; et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932.
  • Chan HW, Kurago ZB, Stewart CA; et al. (2003). "DNA methylation maintains allele-specific KIR gene expression in human natural killer cells". J. Exp. Med. 197 (2): 245–55. PMID 12538663.
  • Becker S, Tonn T, Füssel T; et al. (2003). "Assessment of killer cell immunoglobulinlike receptor expression and corresponding HLA class I phenotypes demonstrates heterogenous KIR expression independent of anticipated HLA class I ligands". Hum. Immunol. 64 (2): 183–93. PMID 12559621.
  • Dorothée G, Echchakir H, Le Maux Chansac B; et al. (2003). "Functional and molecular characterization of a KIR3DL2/p140 expressing tumor-specific cytotoxic T lymphocyte clone infiltrating a human lung carcinoma". Oncogene. 22 (46): 7192–8. doi:10.1038/sj.onc.1206627. PMID 14562047.
  • Artavanis-Tsakonas K, Eleme K, McQueen KL; et al. (2004). "Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes". J. Immunol. 171 (10): 5396–405. PMID 14607943.
  • Meenagh A, Williams F, Sleator C; et al. (2005). "Investigation of killer cell immunoglobulin-like receptor gene diversity V. KIR3DL2". Tissue Antigens. 64 (3): 226–34. doi:10.1111/j.1399-0039.2004.00272.x. PMID 15304002.
  • Yan LX, Zhu FM, Jiang K; et al. (2006). "Investigation of killer cell immunoglobulin-like receptors gene KIR3DL2 diversity and confirmation of KIR3DL2*015 in a Chinese population". Tissue Antigens. 68 (3): 220–4. doi:10.1111/j.1399-0039.2006.00651.x. PMID 16948642.
  • Ortonne N, Bagot M, Bensussan A (2006). "[KIR3DL2: a new step for the management of patients with Sezary syndrome]". Med Sci (Paris). 22 (8–9): 691–3. PMID 16962036.
  • Gedil MA, Steiner NK, Hurley CK (2007). "KIR3DL2: diversity in a hematopoietic stem cell transplant population". Tissue Antigens. 70 (3): 228–32. doi:10.1111/j.1399-0039.2007.00880.x. PMID 17661911.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Template:WikiDoc Sources