Metabotropic glutamate receptor 1

Revision as of 19:32, 4 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Glutamate receptor, metabotropic 1, mGluR1
File:PBB Protein GRM1 image.jpg
PDB rendering based on 1ewk.
Available structures
PDB Ortholog search: Template:Homologene2PDBe PDBe, Template:Homologene2uniprot RCSB
Identifiers
Symbols GRM1 ; GPRC1A; GRM1A; MGLUR1; MGLUR1A; mGlu1
External IDs Template:OMIM5 Template:MGI HomoloGene649
RNA expression pattern
File:PBB GE GRM1 207299 s at tn.png
File:PBB GE GRM1 210939 s at tn.png
File:PBB GE GRM1 210940 s at tn.png
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

Glutamate receptor, metabotropic 1, GluR1, also known as GRM1, is a human gene.[1]

L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The metabotropic glutamate receptors are a family of G protein-coupled receptors, that have been divided into 3 groups on the basis of sequence homology, putative signal transduction mechanisms, and pharmacologic properties. Group I includes GRM1 and GRM5 and these receptors have been shown to activate phospholipase C. Group II includes GRM2 and GRM3 while Group III includes GRM4, GRM6, GRM7 and GRM8. Group II and III receptors are linked to the inhibition of the cyclic AMP cascade but differ in their agonist selectivities. Alternative splice variants of the GRM1 gene have been described but their full-length nature has not been determined.[1]

See also

References

  1. 1.0 1.1 "Entrez Gene: GRM1 glutamate receptor, metabotropic 1".

Further reading

  • Bockaert J, Pin JP (1999). "Molecular tinkering of G protein-coupled receptors: an evolutionary success". EMBO J. 18 (7): 1723–9. doi:10.1093/emboj/18.7.1723. PMID 10202136.
  • King JE, Eugenin EA, Buckner CM, Berman JW (2006). "HIV tat and neurotoxicity". Microbes Infect. 8 (5): 1347–57. doi:10.1016/j.micinf.2005.11.014. PMID 16697675.
  • Desai MA, Burnett JP, Mayne NG, Schoepp DD (1995). "Cloning and expression of a human metabotropic glutamate receptor 1 alpha: enhanced coupling on co-transfection with a glutamate transporter". Mol. Pharmacol. 48 (4): 648–57. PMID 7476890.
  • Scherer SW, Duvoisin RM, Kuhn R; et al. (1997). "Localization of two metabotropic glutamate receptor genes, GRM3 and GRM8, to human chromosome 7q". Genomics. 31 (2): 230–3. doi:10.1006/geno.1996.0036. PMID 8824806.
  • Brakeman PR, Lanahan AA, O'Brien R; et al. (1997). "Homer: a protein that selectively binds metabotropic glutamate receptors". Nature. 386 (6622): 284–8. doi:10.1038/386284a0. PMID 9069287.
  • Stephan D, Bon C, Holzwarth JA; et al. (1997). "Human metabotropic glutamate receptor 1: mRNA distribution, chromosome localization and functional expression of two splice variants". Neuropharmacology. 35 (12): 1649–60. PMID 9076744.
  • Makoff AJ, Phillips T, Pilling C, Emson P (1997). "Expression of a novel splice variant of human mGluR1 in the cerebellum". Neuroreport. 8 (13): 2943–7. PMID 9376535.
  • Francesconi A, Duvoisin RM (1998). "Role of the second and third intracellular loops of metabotropic glutamate receptors in mediating dual signal transduction activation". J. Biol. Chem. 273 (10): 5615–24. PMID 9488690.
  • Okamoto T, Sekiyama N, Otsu M; et al. (1998). "Expression and purification of the extracellular ligand binding region of metabotropic glutamate receptor subtype 1". J. Biol. Chem. 273 (21): 13089–96. PMID 9582347.
  • Snow BE, Hall RA, Krumins AM; et al. (1998). "GTPase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain". J. Biol. Chem. 273 (28): 17749–55. PMID 9651375.
  • Xiao B, Tu JC, Petralia RS; et al. (1998). "Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins". Neuron. 21 (4): 707–16. PMID 9808458.
  • Tu JC, Xiao B, Yuan JP; et al. (1998). "Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors". Neuron. 21 (4): 717–26. PMID 9808459.
  • Ciruela F, Robbins MJ, Willis AC, McIlhinney RA (1999). "Interactions of the C terminus of metabotropic glutamate receptor type 1alpha with rat brain proteins: evidence for a direct interaction with tubulin". J. Neurochem. 72 (1): 346–54. PMID 9886087.
  • Robbins MJ, Ciruela F, Rhodes A, McIlhinney RA (1999). "Characterization of the dimerization of metabotropic glutamate receptors using an N-terminal truncation of mGluR1alpha". J. Neurochem. 72 (6): 2539–47. PMID 10349865.
  • Mody N, Hermans E, Nahorski SR, Challiss RA (1999). "Inhibition of N-linked glycosylation of the human type 1alpha metabotropic glutamate receptor by tunicamycin: effects on cell-surface receptor expression and function". Neuropharmacology. 38 (10): 1485–92. PMID 10530810.
  • Francesconi A, Duvoisin RM (2000). "Opposing effects of protein kinase C and protein kinase A on metabotropic glutamate receptor signaling: selective desensitization of the inositol trisphosphate/Ca2+ pathway by phosphorylation of the receptor-G protein-coupling domain". Proc. Natl. Acad. Sci. U.S.A. 97 (11): 6185–90. PMID 10823959.
  • Ganesh S, Amano K, Yamakawa K (2000). "Assignment of the gene GRM1 coding for metabotropic glutamate receptor 1 to human chromosome band 6q24 by in situ hybridization". Cytogenet. Cell Genet. 88 (3–4): 314–5. PMID 10828618.
  • Ray K, Hauschild BC (2000). "Cys-140 is critical for metabotropic glutamate receptor-1 dimerization". J. Biol. Chem. 275 (44): 34245–51. doi:10.1074/jbc.M005581200. PMID 10945991.
  • Hartley JL, Temple GF, Brasch MA (2001). "DNA cloning using in vitro site-specific recombination". Genome Res. 10 (11): 1788–95. PMID 11076863.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Template:WikiDoc Sources