Cirrhosis pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
==Pathophysiology==
==Pathophysiology==


* The liver plays a vital role in the synthesis of proteins (e.g. [[serum albumin|albumin]], [[coagulation|clotting factors]] and [[complement system|complement]]), detoxification, and storage (e.g. [[vitamin A]]). In addition, it participates in the metabolism of [[lipid]]s and [[carbohydrate]]s.
* The liver plays a vital role in the following:
** Synthesis of proteins (e.g. [[serum albumin|albumin]], [[coagulation|clotting factors]] and [[complement system|complement]])  
** Detoxification
** Storage (e.g. [[vitamin A]])
** Metabolism of [[lipid]]s and [[carbohydrate]]s


* Cirrhosis is often preceded by [[hepatitis]] and fatty liver ([[steatosis]]). If the cause is removed at this stage, the changes are still fully reversible.
* Cirrhosis is often preceded by [[hepatitis]] and fatty liver ([[steatosis]]).


* The pathological hallmark of cirrhosis is the development of scar tissue that replaces normal [[parenchyma]], blocking the portal flow of blood through the organ and disturbing normal function. The development of [[fibrosis]] requires several months, or even years, of ongoing injury.
* The pathological hallmark of cirrhosis is the development of scar tissue that replaces normal [[parenchyma]], blocking the portal flow of blood through the organ and disturbing normal function.  
* The development of [[fibrosis]] requires several months, or even years, of ongoing injury.


* Recent research shows the pivotal role of the [[Ito cell|stellate cell]], a cell type that normally stores [[vitamin A]], in the development of cirrhosis. Damage to the hepatic [[parenchyma]] leads to the activation of the stellate cell, which becomes contractile (called [[myofibroblast]]) and obstructs blood flow in the circulation. In addition, it secretes [[TGF beta 1|TGF-β<sub>1</sub>]], which leads to a fibrotic response and proliferation of [[connective tissue]]. The [[extracellular matrix]] around [[hepatocytes]] is composed of [[collagen]]s (especially type I, III, IV), [[glycoprotein]] and [[proteoglycan]]s.  
* The [[Ito cell|stellate cell]], a cell type that normally stores [[vitamin A]], plays a pivotal role in the development of cirrhosis.
* Damage to the hepatic [[parenchyma]] leads to activation of the stellate cell, which becomes contractile (called [[myofibroblast]]) and obstructs blood flow in the circulation.  
* The [[stellate cell]] secretes [[TGF beta 1|TGF-β<sub>1</sub>]], which leads to a fibrotic response and proliferation of [[connective tissue]].  
* Connective tissue proliferation leads to the formation of[[extracellular matrix]] around [[hepatocytes]] and is composed of [[collagen]]s (especially type I, III, IV), [[glycoprotein]] and [[proteoglycan]]s.  


* Sinusoidal endothelial cells are also important contributors of early fibrosis. [[Endothelial cell]]s from a normal liver produces collagen, [[laminin]] and [[fibronectin]].<ref>{{cite journal |author=Maher JJ, McGuire RF |title=Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo |journal=J. Clin. Invest. |volume=86 |issue=5 |pages=1641–8 |year=1990 |month=November |pmid=2243137 |pmc=296914 |doi=10.1172/JCI114886 |url=}}</ref><ref>{{cite journal |author=Herbst H, Frey A, Heinrichs O, ''et al.'' |title=Heterogeneity of liver cells expressing procollagen types I and IV in vivo |journal=Histochem. Cell Biol. |volume=107 |issue=5 |pages=399–409 |year=1997 |month=May |pmid=9208331 |doi= |url=}}</ref>
* Sinusoidal endothelial cells are also important contributors of early fibrosis. [[Endothelial cell]]s from a normal liver produces collagen, [[laminin]] and [[fibronectin]].<ref>{{cite journal |author=Maher JJ, McGuire RF |title=Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo |journal=J. Clin. Invest. |volume=86 |issue=5 |pages=1641–8 |year=1990 |month=November |pmid=2243137 |pmc=296914 |doi=10.1172/JCI114886 |url=}}</ref><ref>{{cite journal |author=Herbst H, Frey A, Heinrichs O, ''et al.'' |title=Heterogeneity of liver cells expressing procollagen types I and IV in vivo |journal=Histochem. Cell Biol. |volume=107 |issue=5 |pages=399–409 |year=1997 |month=May |pmid=9208331 |doi= |url=}}</ref>


*In addition, the liver responds to injury with new blood vessel formation. Platelet derived growth factor (PDGF), [[vascular endothelial growth factor]] (VEGF), [[nitric oxide]], and [[carbon monoxide]] are the mediators involved in angiogenesis.  [[Angiogenesis]] in cirrhosis results in the production of immature and permeable VEGF induced neo-vessels that fail to correct liver injury. <ref>{{cite journal |author=Lee JS, Semela D, Iredale J, Shah VH |title=Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? |journal=Hepatology |volume=45 |issue=3 |pages=817–25 |year=2007 |month=March |pmid=17326208 |doi=10.1002/hep.21564 |url=}}</ref>,<ref>{{cite journal |author=Rosmorduc O, Housset C |title=Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease |journal=Semin. Liver Dis. |volume=30 |issue=3 |pages=258–70 |year=2010 |month=August |pmid=20665378 |doi=10.1055/s-0030-1255355 |url=}}</ref>
*The liver responds to injury with new blood vessel formation. Mediators involved in angiogenesis include:
**Platelet derived growth factor (PDGF)
**[[vascular endothelial growth factor]] (VEGF)
**[[nitric oxide]]  
**[[carbon monoxide]]  
*[[Angiogenesis]] in cirrhosis results in the production of immature and permeable [[Vascular endothelial growth factor|VEGF]] induced neo-[[Blood vessel|vessels]] that fail to correct [[liver]] injury. <ref>{{cite journal |author=Lee JS, Semela D, Iredale J, Shah VH |title=Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? |journal=Hepatology |volume=45 |issue=3 |pages=817–25 |year=2007 |month=March |pmid=17326208 |doi=10.1002/hep.21564 |url=}}</ref><ref>{{cite journal |author=Rosmorduc O, Housset C |title=Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease |journal=Semin. Liver Dis. |volume=30 |issue=3 |pages=258–70 |year=2010 |month=August |pmid=20665378 |doi=10.1055/s-0030-1255355 |url=}}</ref>


* Furthermore, it disturbs the balance between [[matrix metalloproteinase]]s and the naturally occurring inhibitors (TIMP 1 and 2), leading to[[matrix (biology)|matrix]] breakdown and replacement by connective tissue-secreted matrix.<ref>Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments. [[British Medical Journal|BMJ]] 2003;327:143-7.[http://bmj.bmjjournals.com/cgi/content/full/327/7407/143 Fulltext.] PMID 12869458.</ref>.  [[Matrix metalloproteinase]] (MMP) are [[calcium dependent enzyme]]s that specifically degrade [[collagen]] and non collagenous substrate.  There are five categories of MMP based upon their specificity for the substrate.  MMP-2 and stromyelysin-1 are produced from stellate cells.  MMP-2 degrades collagen and stromelysin-1 degrades [[proteoglycan]] and [[glycoprotein]].
* Furthermore, it disturbs the balance between [[matrix metalloproteinase]]s and the naturally occurring inhibitors (TIMP 1 and 2), leading to[[matrix (biology)|matrix]] breakdown and replacement by connective tissue-secreted matrix.<ref>Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments. [[British Medical Journal|BMJ]] 2003;327:143-7.[http://bmj.bmjjournals.com/cgi/content/full/327/7407/143 Fulltext.] PMID 12869458.</ref>.  [[Matrix metalloproteinase]] (MMP) are [[calcium dependent enzyme]]s that specifically degrade [[collagen]] and non collagenous substrate.  There are five categories of MMP based upon their specificity for the substrate.  MMP-2 and stromyelysin-1 are produced from stellate cells.  MMP-2 degrades collagen and stromelysin-1 degrades [[proteoglycan]] and [[glycoprotein]].
Line 137: Line 150:
| style="background:#F5F5F5;" + |Irreversible [[deamination]] of [[adenosine]] and [[deoxyadenosine]] in the [[Purine metabolism|purine catabolic pathway]]  
| style="background:#F5F5F5;" + |Irreversible [[deamination]] of [[adenosine]] and [[deoxyadenosine]] in the [[Purine metabolism|purine catabolic pathway]]  
| style="background:#F5F5F5;" + |Reduced<ref name="KotaniKawabe2015">{{cite journal|last1=Kotani|first1=Kohei|last2=Kawabe|first2=Joji|last3=Morikawa|first3=Hiroyasu|last4=Akahoshi|first4=Tomohiko|last5=Hashizume|first5=Makoto|last6=Shiomi|first6=Susumu|title=Comprehensive Screening of Gene Function and Networks by DNA Microarray Analysis in Japanese Patients with Idiopathic Portal Hypertension|journal=Mediators of Inflammation|volume=2015|year=2015|pages=1–10|issn=0962-9351|doi=10.1155/2015/349215}}</ref>  
| style="background:#F5F5F5;" + |Reduced<ref name="KotaniKawabe2015">{{cite journal|last1=Kotani|first1=Kohei|last2=Kawabe|first2=Joji|last3=Morikawa|first3=Hiroyasu|last4=Akahoshi|first4=Tomohiko|last5=Hashizume|first5=Makoto|last6=Shiomi|first6=Susumu|title=Comprehensive Screening of Gene Function and Networks by DNA Microarray Analysis in Japanese Patients with Idiopathic Portal Hypertension|journal=Mediators of Inflammation|volume=2015|year=2015|pages=1–10|issn=0962-9351|doi=10.1155/2015/349215}}</ref>  
| style="background:#F5F5F5; + |Some roles in modulating tissue response to [[Interleukin 13|IL-13]]
| style="background:#F5F5F5; + " |Some roles in modulating tissue response to [[Interleukin 13|IL-13]]


The main effects of [[IL-13]] are:<ref name="pmid12897202">{{cite journal |vauthors=Blackburn MR, Lee CG, Young HW, Zhu Z, Chunn JL, Kang MJ, Banerjee SK, Elias JA |title=Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway |journal=J. Clin. Invest. |volume=112 |issue=3 |pages=332–44 |year=2003 |pmid=12897202 |pmc=166289 |doi=10.1172/JCI16815 |url=}}</ref>
The main effects of [[IL-13]] are:<ref name="pmid12897202">{{cite journal |vauthors=Blackburn MR, Lee CG, Young HW, Zhu Z, Chunn JL, Kang MJ, Banerjee SK, Elias JA |title=Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway |journal=J. Clin. Invest. |volume=112 |issue=3 |pages=332–44 |year=2003 |pmid=12897202 |pmc=166289 |doi=10.1172/JCI16815 |url=}}</ref>
Line 231: Line 244:
* [[Transformation|Tissue transformation]]
* [[Transformation|Tissue transformation]]
* [[Apoptosis]] regulation<ref name="pmid11586292">{{cite journal |vauthors=Derynck R, Akhurst RJ, Balmain A |title=TGF-beta signaling in tumor suppression and cancer progression |journal=Nat. Genet. |volume=29 |issue=2 |pages=117–29 |year=2001 |pmid=11586292 |doi=10.1038/ng1001-117 |url=}}</ref>
* [[Apoptosis]] regulation<ref name="pmid11586292">{{cite journal |vauthors=Derynck R, Akhurst RJ, Balmain A |title=TGF-beta signaling in tumor suppression and cancer progression |journal=Nat. Genet. |volume=29 |issue=2 |pages=117–29 |year=2001 |pmid=11586292 |doi=10.1038/ng1001-117 |url=}}</ref>
| style="background:#F5F5F5; + |Reduced<ref name="KotaniKawabe2015" />  
| style="background:#F5F5F5; + " |Reduced<ref name="KotaniKawabe2015" />  
| style="background:#F5F5F5; + |Hyper-expressed in African-American hypertensive patients<ref name="pmid10725360">{{cite journal |vauthors=Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P |title=Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue=7 |pages=3479–84 |year=2000 |pmid=10725360 |pmc=16265 |doi=10.1073/pnas.050420897 |url=}}</ref>
| style="background:#F5F5F5; + " |Hyper-expressed in African-American hypertensive patients<ref name="pmid10725360">{{cite journal |vauthors=Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P |title=Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue=7 |pages=3479–84 |year=2000 |pmid=10725360 |pmc=16265 |doi=10.1073/pnas.050420897 |url=}}</ref>
|-
|-
| style="background:#DCDCDC;" align="center" + |'''Ectonucleoside triphosphate diphosphohydrolase 4 (ENTPD4)'''
| style="background:#DCDCDC;" align="center" + |'''Ectonucleoside triphosphate diphosphohydrolase 4 (ENTPD4)'''
Line 294: Line 307:
=== Esophageal Varices ===
=== Esophageal Varices ===
On gross pathology, prominent, congested, and tortoise [[veins]] in the lower parts of [[esophagus]] are characteristic findings of [[esophageal varices]].
On gross pathology, prominent, congested, and tortoise [[veins]] in the lower parts of [[esophagus]] are characteristic findings of [[esophageal varices]].
|colspan="2"|
| colspan="2" |
[[image:F21. Venous enlargement in hepatic cirrhosis. Alfred Kast Wellcome L0074357.jpg|thumb|200px|center|Esophageal varices<ref><http://wellcomeimages.org/indexplus/obf_images/29/b4/13f38971164f946a97f9d32ddd93.jpg>Gallery: <"http://wellcomeimages.org/indexplus/image/L0074357.html"><"http://creativecommons.org/licenses/by/4.0> CC BY 4.0, <"https://commons.wikimedia.org/w/index.php?curid=36297209"></ref>]]
[[image:F21. Venous enlargement in hepatic cirrhosis. Alfred Kast Wellcome L0074357.jpg|thumb|200px|center|Esophageal varices<ref><http://wellcomeimages.org/indexplus/obf_images/29/b4/13f38971164f946a97f9d32ddd93.jpg>Gallery: <"http://wellcomeimages.org/indexplus/image/L0074357.html"><"http://creativecommons.org/licenses/by/4.0> CC BY 4.0, <"https://commons.wikimedia.org/w/index.php?curid=36297209"></ref>]]
|}
|}
Line 358: Line 371:


{| class="wikitable"
{| class="wikitable"
| colspan="2"|
| colspan="2" |
*The main microscopic [[histopathological]] findings in portal hypertension are related to [[Cirrhosis (patient information)|cirrhosis]], [[esophageal varices]], [[Hepatic amyloidosis with intrahepatic cholestasis|hepatic amyloidosis]], and congestive [[hepatopathy]] due to [[heart failure]] or [[Budd-Chiari syndrome]].
*The main microscopic [[histopathological]] findings in portal hypertension are related to [[Cirrhosis (patient information)|cirrhosis]], [[esophageal varices]], [[Hepatic amyloidosis with intrahepatic cholestasis|hepatic amyloidosis]], and congestive [[hepatopathy]] due to [[heart failure]] or [[Budd-Chiari syndrome]].
|-
|-

Revision as of 13:59, 20 December 2017

https://https://www.youtube.com/watch?v=5szNmKtyBW4%7C350}}

Cirrhosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cirrhosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Tertiary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case studies

Case #1

Cirrhosis pathophysiology On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cirrhosis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cirrhosis pathophysiology

CDC on Cirrhosis pathophysiology

Cirrhosis pathophysiology in the news

Blogs on Cirrhosis pathophysiology

Directions to Hospitals Treating Cirrhosis

Risk calculators and risk factors for Cirrhosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief:

Overview

Cirrhosis occurs due to long term liver injury which causes an imbalance between matrix production and degradation. Early disruption of the normal hepatic matrix results in its replacement by scar tissue, which in turn has deleterious effects on cell function.

Pathophysiology

  • The pathological hallmark of cirrhosis is the development of scar tissue that replaces normal parenchyma, blocking the portal flow of blood through the organ and disturbing normal function.
  • The development of fibrosis requires several months, or even years, of ongoing injury.
  • The fibrous tissue bands (septa) separate hepatocyte nodules, which eventually replace the entire liver architecture, leading to decreased blood flow throughout.
  • The spleen becomes congested, which leads to hypersplenism and increased sequestration of platelets.
  • Portal hypertension is responsible for the most severe complications of cirrhosis.

Pathophysiology of Alcoholic liver disease

  • The cytochrome P450 enzymes (CYP) are a part of the microsomal ethanol oxidizing system. These are a large group of enzymes involved in numerous oxidizing reactions on different substrates. They catalyze many different reactions in order to make them in to more polar metabolites that are easier to excrete.[16]
  • Ethanol metabolism additionally promotes lipogenesis through the inhibition of peroxisome proliferator activated receptor α (PPAR-α) and AMP kinase, as well as the stimulation of sterol regulatory element binding protein 1, which is a membrane bound transcription factor. The sequence of all these events results in a fat storing metabolic remodeling of the liver.[33][34][35]
  • Two key factors that play an important role in the inflammatory process that leads to the alcohol mediated liver injury are:[36][37]
  • Endotoxin is associated to the lipopolysaccharide (LPS) component of the outer wall of gram-negative bacteria and is thought to be the key trigger in this inflammatory process.[38][39]
  • Gut permeability is the factor that is either enabling or preventing the transfer of the LPS-endotoxin from the intestinal lumen into the portal circulation.[40][41]
  • The fact that long term exposure to alcohol increases gut permeability has been observed in humans as LPS-endotoxin levels have been found to be elevated in patients with alcoholic liver injury.[42]
  • After the entry of LPS-endotoxin in to the portal circulation it binds to the LPS-binding protein, this is a key step in the inflammatory and histopathological response to alcohol ingestion.[43]
  • The LPS-LPS binding protein complex binds to the CD14 receptor on the cell surface membrane of the Kupffer cells in the liver.
  • Activation of these Kupffer cells requires 3 main cellular proteins:[44]
    • CD14 (monocyte differentiation antigen)[45]
    • Toll-like receptor 4 (TLR4)[46]
    • MD2, a protein, binds TLR4 with LPS-LPS binding protein
  • The TLR4 then signals activation of early growth response 1 (EGR1), which is an early gene-zinc-finger transcription factor.[47]
  • The nuclear factor-kB (NF-kB) and the TLR4 adapter also play an important role in the activation of the kupffer cells.[48]
  • EGR1 plays the pivotal role in lipopolysaccharide-stimulated TNF-α production.
  • In mice the absence of EGR1 prevents alcohol induced liver injury.[49]
  • Ethanol administration stimulates the release of mitochondrial cytochrome c and the expression of the Fas ligand, this leads to hepatic cell apoptosis mediated by the cascade-3 activation pathway.[50]
  • The cumulative effect of TNF-α and Fas-mediated apoptotic signals make the hepatocytes more susceptible to injury by stimulating an increase in natural killer T cells in the liver.[51]

Pathophysiology of Portal Hypertension

Increased resistance

Hyperdynamic circulation in portal hypertension

Genetics

  • Certain TERT (Telomerase reverese transcriptase)gene variants resulting in reduced telomerase activity has been found to be a risk factor for sporadic cirrhosis[66]
  • An uncharacterized nucleolar protein, NOL11, has a role in the pathogenesis of North American Indian childhood cirrhosis[67]
  • Loss of interaction between the C-terminus of Utp4/cirhin and other SSU processome proteins may cause North American Indian childhood cirrhosis[68]
  • Genes are involved in the pathogenesis of portal hypertension include the following:
Gene OMIM number Chromosome Function Gene expression in portal hypertension Notes
Deoxyguanosine kinase (DGUOK) 601465 2p13.1 DNA replication Point mutation Mutation leads to:[69]

Homozygous missense mutation leads to:[70]

Adenosine deaminase (ADA) 608958 20q13.12 Irreversible deamination of adenosine and deoxyadenosine in the purine catabolic pathway Reduced[71] Some roles in modulating tissue response to IL-13

The main effects of IL-13 are:[72]

Phospholipase A2 (PL2G10) 603603 16p13.12 Catalyzing the release of fatty acids from phospholipids Reduced[71] Identifier of PL2G10 expression:
Cytochrome P450, family 4, subfamily F, polypeptide 3 (CYP4F3) 601270 19p13.12 Catalyzing the omega-hydroxylation of leukotriene B4 (LTB4) Increased[71] -
Glutathione peroxidase 3 (GPX3) 138321 5q33.1 Reduction of glutathione which reduce:[73] Increased[71] Protects various organs against oxidative stress:[74]
Leukotriene B4 (LTB4) 601531 14q12 Include:[75] Mutated Increase blood flow to target tissue (esp. heart) about 4 times more.[76]
Prostaglandin E receptor 2 (PTGER2) 176804 14q22.1 Various biological activities in diverse tissues Reduced[71] -
Endothelin (EDN1) 131240 6p24.1 Vasoconstriction[77] Increased The most powerful vasoconstrictor known[78]
Endothelin receptor type A (EDNRA) 131243 4q31.22-q31.23 Vasoconstriction through binding to endothelin Reduced[71] Directly related to hypertension in patients[77]
Natriuretic peptide receptor 3 (NPR3) 108962 5p13.3 Maintenance of: Increased[71] Released from heart muscle in response to increase in wall tension. ANP can modulate blood pressure by binding to NPR3[79]
Cluster of differentiation 44 (CD44) 107269 11p13 Reduced[71]
Transforming growth factor (TGF)-β 190180 19q13.2 Reduced[71] Hyper-expressed in African-American hypertensive patients[84]
Ectonucleoside triphosphate diphosphohydrolase 4 (ENTPD4) 607577 8p21.3 Increasing phosphatase activity in intracellular membrane-bound nucleosides Reduced[71] -
ATP-binding cassette, subfamily C, member 1 (ABCC1) 158343 16p13.11 Multi-drug resistance in small cell lung cancer[85] Reduced -

Associated Conditions

 
 
 
 
 
 
 
 
 
 
Portal Hypertension
associated conditions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Immunological disorders
 
Infections
 
Medication and toxins
 
Genetic disorders
 
Prothrombotic conditions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Common variable immunodeficiency syndrome[86]
Connective tissue diseases[87]
Crohn’s disease[88]
Solid organ transplant
•• Renal transplantation[89]
•• Liver transplantation[90]
Hashimoto's thyroiditis[91]
Autoimmune disease[92]
 
Bacterial intestinal infections
• Recurrent E.coli infection[93]
Human immunodeficiency virus (HIV) infection[94]
Antiretroviral therapy[95]
 
Thiopurine derivatives
•• Didanosine
•• Azathioprine[96]
•• Cis-thioguanine[97]
Arsenicals[98]
Vitamin A[99]
 
• Adams-Olivier syndrome[100]
Turner syndrome[101]
• Phosphomannose isomerase deficiency[102]
• Familial cases[103]
 
Inherited thrombophilias [104]
Myeloproliferative neoplasm[104]
Antiphospholipid syndrome[104]
Sickle cell disease[105]
 
 

Gross Pathology

Macroscopically, the liver may initially be enlarged, but with progression of the disease, it becomes smaller. Its surface is irregular, the consistency is firm, and the color is often yellow (if associates steatosis). Depending on the size of the nodules there are three macroscopic types: micronodular, macronodular and mixed cirrhosis.

  • In the micronodular form (Laennec's cirrhosis or portal cirrhosis) regenerating nodules are under 3 mm.
  • In macronodular cirrhosis (post-necrotic cirrhosis), the nodules are larger than 3 mm.
  • The mixed cirrhosis consists of a variety of nodules with different sizes.

Gross Pathology

Cirrhosis

On gross pathology there are two types of cirrhosis:

Micronodular cirrhosis - By Amadalvarez (Own work), via Wikimedia Commons[106]
Macronodular cirrhosis[107]

Splenomegaly

On gross pathology, diffuse enlargement and congestion of the spleen are characteristic findings of splenomegaly.

Splenomegaly - By Amadalvarez (Own work), via Wikimedia Commons[108]

Esophageal Varices

On gross pathology, prominent, congested, and tortoise veins in the lower parts of esophagus are characteristic findings of esophageal varices.

Esophageal varices[109]

Images courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology

Microscopic Pathology

Microscopically, cirrhosis is characterized by regeneration nodules surrounded by fibrous septa. In these nodules, regenerating hepatocytes are disorderly disposed. Portal tracts, central veins and the radial pattern of hepatocytes are absent. Fibrous septa are important and may present inflammatory infiltrate (lymphocytes, macrophages). If it is a secondary biliary cirrhosis, biliary ducts are damaged, proliferated or distended - bile stasis. These dilated ducts contain inspissated bile which appears as bile casts or bile thrombi (brown-green, amorphous). Bile retention may be found also in the parenchyma, as the so called "bile lakes".[110]

Microscopic Pathology

Cirrhosis

Robbins definition of microscopic histopathological findings in cirrhosis includes (all three is needed for diagnosis):[111]

Cirrhosis with bridging fibrosis (yellow arrow) and nodule (black arrow) - By Nephron, via Librepathology.org[112]

Esophageal varices

The main microscopic histopathological findings in esophageal varices are:

Esophageal varices with submucosal vein (black arrow), via Librepathology.org[113]

Hepatic amyloidosis

The main microscopic histopathological findings in hepatic amyloidosis is amorphous extracellular pink stuff on H&E staining.

Hepatic amyloidosis with amorphous amyloids (black arrow) and normal hepatocytes (blue arrow), via Librepathology.org[114]

Congestive hepatopathy

The main microscopic histopathological findings in congestive hepatopathy (due to heart failure or Budd-Chiari syndrome) are:

Congestive hepatopathy with central vein (yellow arrowhead), inflammatory cells, Councilman body (green arrowhead), and hepatocyte with mitotic figure (red arrowhead), via Librepathology.org[115]

Chronic active hepatitis - Cirrhosis

{{#ev:youtube|CzKGvWZrUpU}}

Micronodular cirrhosis

{{#ev:youtube|CV8OYeIUXko}}

Primary biliary cirrhosis

{{#ev:youtube|Jj8ozr_IttM}}

References

  1. Maher JJ, McGuire RF (1990). "Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo". J. Clin. Invest. 86 (5): 1641–8. doi:10.1172/JCI114886. PMC 296914. PMID 2243137. Unknown parameter |month= ignored (help)
  2. Herbst H, Frey A, Heinrichs O; et al. (1997). "Heterogeneity of liver cells expressing procollagen types I and IV in vivo". Histochem. Cell Biol. 107 (5): 399–409. PMID 9208331. Unknown parameter |month= ignored (help)
  3. Lee JS, Semela D, Iredale J, Shah VH (2007). "Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte?". Hepatology. 45 (3): 817–25. doi:10.1002/hep.21564. PMID 17326208. Unknown parameter |month= ignored (help)
  4. Rosmorduc O, Housset C (2010). "Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease". Semin. Liver Dis. 30 (3): 258–70. doi:10.1055/s-0030-1255355. PMID 20665378. Unknown parameter |month= ignored (help)
  5. Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments. BMJ 2003;327:143-7.Fulltext. PMID 12869458.
  6. Ceni E, Mello T, Galli A (2014). "Pathogenesis of alcoholic liver disease: role of oxidative metabolism". World J. Gastroenterol. 20 (47): 17756–72. doi:10.3748/wjg.v20.i47.17756. PMC 4273126. PMID 25548474.
  7. You M, Crabb DW (2004). "Recent advances in alcoholic liver disease II. Minireview: molecular mechanisms of alcoholic fatty liver". Am. J. Physiol. Gastrointest. Liver Physiol. 287 (1): G1–6. doi:10.1152/ajpgi.00056.2004. PMID 15194557.
  8. Freeman TL, Tuma DJ, Thiele GM, Klassen LW, Worrall S, Niemelä O, Parkkila S, Emery PW, Preedy VR (2005). "Recent advances in alcohol-induced adduct formation". Alcohol. Clin. Exp. Res. 29 (7): 1310–6. PMID 16088993.
  9. Niemelä O (2007). "Acetaldehyde adducts in circulation". Novartis Found. Symp. 285: 183–92, discussion 193–7. PMID 17590995.
  10. Tuma DJ (2002). "Role of malondialdehyde-acetaldehyde adducts in liver injury". Free Radic. Biol. Med. 32 (4): 303–8. PMID 11841919.
  11. Tuma DJ, Casey CA (2003). "Dangerous byproducts of alcohol breakdown--focus on adducts". Alcohol Res Health. 27 (4): 285–90. PMID 15540799.
  12. Brooks PJ, Theruvathu JA (2005). "DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis". Alcohol. 35 (3): 187–93. doi:10.1016/j.alcohol.2005.03.009. PMID 16054980.
  13. Seitz HK, Becker P (2007). "Alcohol metabolism and cancer risk". Alcohol Res Health. 30 (1): 38–41, 44–7. PMC 3860434. PMID 17718399.
  14. Biewald J, Nilius R, Langner J (1998). "Occurrence of acetaldehyde protein adducts formed in various organs of chronically ethanol fed rats: an immunohistochemical study". Int. J. Mol. Med. 2 (4): 389–96. PMID 9857222.
  15. Seitz HK, Meier P (2007). "The role of acetaldehyde in upper digestive tract cancer in alcoholics". Transl Res. 149 (6): 293–7. doi:10.1016/j.trsl.2006.12.002. PMID 17543846.
  16. Guengerich FP, Beaune PH, Umbenhauer DR, Churchill PF, Bork RW, Dannan GA, Knodell RG, Lloyd RS, Martin MV (1987). "Cytochrome P-450 enzymes involved in genetic polymorphism of drug oxidation in humans". Biochem. Soc. Trans. 15 (4): 576–8. PMID 3678578.
  17. Guengerich FP, Beaune PH, Umbenhauer DR, Churchill PF, Bork RW, Dannan GA, Knodell RG, Lloyd RS, Martin MV (1987). "Cytochrome P-450 enzymes involved in genetic polymorphism of drug oxidation in humans". Biochem. Soc. Trans. 15 (4): 576–8. PMID 3678578.
  18. Lieber CS (1972). "Metabolism of ethanol and alcoholism: racial and acquired factors". Ann. Intern. Med. 76 (2): 326–7. PMID 5009602.
  19. Lieber CS, DeCarli LM (1972). "The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo". J. Pharmacol. Exp. Ther. 181 (2): 279–87. PMID 4402282.
  20. Lieber CS (1997). "Cytochrome P-4502E1: its physiological and pathological role". Physiol. Rev. 77 (2): 517–44. PMID 9114822.
  21. Hansson T, Tindberg N, Ingelman-Sundberg M, Köhler C (1990). "Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system". Neuroscience. 34 (2): 451–63. PMID 2333153.
  22. Donohue TM, Cederbaum AI, French SW, Barve S, Gao B, Osna NA (2007). "Role of the proteasome in ethanol-induced liver pathology". Alcohol. Clin. Exp. Res. 31 (9): 1446–59. doi:10.1111/j.1530-0277.2007.00454.x. PMID 17760783.
  23. Osna NA, Donohue TM (2007). "Implication of altered proteasome function in alcoholic liver injury". World J. Gastroenterol. 13 (37): 4931–7. PMC 4434615. PMID 17854134.
  24. Lu Y, Cederbaum AI (2008). "CYP2E1 and oxidative liver injury by alcohol". Free Radic. Biol. Med. 44 (5): 723–38. doi:10.1016/j.freeradbiomed.2007.11.004. PMC 2268632. PMID 18078827.
  25. Yun YP, Casazza JP, Sohn DH, Veech RL, Song BJ (1992). "Pretranslational activation of cytochrome P450IIE during ketosis induced by a high fat diet". Mol. Pharmacol. 41 (3): 474–9. PMID 1545775.
  26. Raucy JL, Lasker JM, Kraner JC, Salazar DE, Lieber CS, Corcoran GB (1991). "Induction of cytochrome P450IIE1 in the obese overfed rat". Mol. Pharmacol. 39 (3): 275–80. PMID 2005876.
  27. Woodcroft KJ, Hafner MS, Novak RF (2002). "Insulin signaling in the transcriptional and posttranscriptional regulation of CYP2E1 expression". Hepatology. 35 (2): 263–73. doi:10.1053/jhep.2002.30691. PMID 11826398.
  28. De Waziers I, Garlatti M, Bouguet J, Beaune PH, Barouki R (1995). "Insulin down-regulates cytochrome P450 2B and 2E expression at the post-transcriptional level in the rat hepatoma cell line". Mol. Pharmacol. 47 (3): 474–9. PMID 7700245.
  29. Peng HM, Coon MJ (1998). "Regulation of rabbit cytochrome P450 2E1 expression in HepG2 cells by insulin and thyroid hormone". Mol. Pharmacol. 54 (4): 740–7. PMID 9765518.
  30. Terelius Y, Norsten-Höög C, Cronholm T, Ingelman-Sundberg M (1991). "Acetaldehyde as a substrate for ethanol-inducible cytochrome P450 (CYP2E1)". Biochem. Biophys. Res. Commun. 179 (1): 689–94. PMID 1822117.
  31. Wu YS, Salmela KS, Lieber CS (1998). "Microsomal acetaldehyde oxidation is negligible in the presence of ethanol". Alcohol. Clin. Exp. Res. 22 (5): 1165–9. PMID 9726291.
  32. Brooks PJ (1997). "DNA damage, DNA repair, and alcohol toxicity--a review". Alcohol. Clin. Exp. Res. 21 (6): 1073–82. PMID 9309320.
  33. Fischer M, You M, Matsumoto M, Crabb DW (2003). "Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice". J. Biol. Chem. 278 (30): 27997–8004. doi:10.1074/jbc.M302140200. PMID 12791698.
  34. You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW (2004). "The role of AMP-activated protein kinase in the action of ethanol in the liver". Gastroenterology. 127 (6): 1798–808. PMID 15578517.
  35. Ji C, Chan C, Kaplowitz N (2006). "Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model". J. Hepatol. 45 (5): 717–24. doi:10.1016/j.jhep.2006.05.009. PMID 16879892.
  36. Tsukamoto H, Reidelberger RD, French SW, Largman C (1984). "Long-term cannulation model for blood sampling and intragastric infusion in the rat". Am. J. Physiol. 247 (3 Pt 2): R595–9. PMID 6433728.
  37. Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG (2001). "Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice". Hepatology. 34 (1): 101–8. doi:10.1053/jhep.2001.25350. PMID 11431739.
  38. Wiest R, Garcia-Tsao G (2005). "Bacterial translocation (BT) in cirrhosis". Hepatology. 41 (3): 422–33. doi:10.1002/hep.20632. PMID 15723320.
  39. Nanji AA, Khettry U, Sadrzadeh SM (1994). "Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease)". Proc. Soc. Exp. Biol. Med. 205 (3): 243–7. PMID 8171045.
  40. Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG (1995). "Antibiotics prevent liver injury in rats following long-term exposure to ethanol". Gastroenterology. 108 (1): 218–24. PMID 7806045.
  41. Bjarnason I, Peters TJ, Wise RJ (1984). "The leaky gut of alcoholism: possible route of entry for toxic compounds". Lancet. 1 (8370): 179–82. PMID 6141332.
  42. Urbaschek R, McCuskey RS, Rudi V, Becker KP, Stickel F, Urbaschek B, Seitz HK (2001). "Endotoxin, endotoxin-neutralizing-capacity, sCD14, sICAM-1, and cytokines in patients with various degrees of alcoholic liver disease". Alcohol. Clin. Exp. Res. 25 (2): 261–8. PMID 11236841.
  43. Uesugi T, Froh M, Arteel GE, Bradford BU, Wheeler MD, Gäbele E, Isayama F, Thurman RG (2002). "Role of lipopolysaccharide-binding protein in early alcohol-induced liver injury in mice". J. Immunol. 168 (6): 2963–9. PMID 11884468.
  44. Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG (1994). "Inactivation of Kupffer cells prevents early alcohol-induced liver injury". Hepatology. 20 (2): 453–60. PMID 8045507.
  45. Yin M, Bradford BU, Wheeler MD, Uesugi T, Froh M, Goyert SM, Thurman RG (2001). "Reduced early alcohol-induced liver injury in CD14-deficient mice". J. Immunol. 166 (7): 4737–42. PMID 11254735.
  46. Hritz I, Mandrekar P, Velayudham A, Catalano D, Dolganiuc A, Kodys K, Kurt-Jones E, Szabo G (2008). "The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88". Hepatology. 48 (4): 1224–31. doi:10.1002/hep.22470. PMID 18792393.
  47. Akira S, Takeda K, Kaisho T (2001). "Toll-like receptors: critical proteins linking innate and acquired immunity". Nat. Immunol. 2 (8): 675–80. doi:10.1038/90609. PMID 11477402.
  48. Zhao XJ, Dong Q, Bindas J, Piganelli JD, Magill A, Reiser J, Kolls JK (2008). "TRIF and IRF-3 binding to the TNF promoter results in macrophage TNF dysregulation and steatosis induced by chronic ethanol". J. Immunol. 181 (5): 3049–56. PMC 3690475. PMID 18713975.
  49. McMullen MR, Pritchard MT, Wang Q, Millward CA, Croniger CM, Nagy LE (2005). "Early growth response-1 transcription factor is essential for ethanol-induced fatty liver injury in mice". Gastroenterology. 128 (7): 2066–76. PMC 1959407. PMID 15940638.
  50. Zhou Z, Sun X, Kang YJ (2001). "Ethanol-induced apoptosis in mouse liver: Fas- and cytochrome c-mediated caspase-3 activation pathway". Am. J. Pathol. 159 (1): 329–38. doi:10.1016/S0002-9440(10)61699-9. PMC 1850406. PMID 11438480.
  51. Minagawa M, Deng Q, Liu ZX, Tsukamoto H, Dennert G (2004). "Activated natural killer T cells induce liver injury by Fas and tumor necrosis factor-alpha during alcohol consumption". Gastroenterology. 126 (5): 1387–99. PMID 15131799.
  52. Greenway CV, Stark RD (1971). "Hepatic vascular bed". Physiol. Rev. 51 (1): 23–65. PMID 5543903.
  53. Schiff, Eugene (2012). Schiff's diseases of the liver. Chichester, West Sussex, UK: John Wiley & Sons. ISBN 9780470654682.
  54. Beker, Simón G.; Valencia-Parparcén, Joel (1968). "Portal hypertension syndrome". The American Journal of Digestive Diseases. 13 (12): 1047–1054. doi:10.1007/BF02233549. ISSN 0002-9211.
  55. SCHAFFNER F, POPER H (1963). "Capillarization of hepatic sinusoids in man". Gastroenterology. 44: 239–42. PMID 13976646.
  56. Reynolds TB, Hidemura R, Michel H, Peters R (1969). "Portal hypertension without cirrhosis in alcoholic liver disease". Ann. Intern. Med. 70 (3): 497–506. PMID 5775031.
  57. Rubanyi GM (1991). "Endothelium-derived relaxing and contracting factors". J. Cell. Biochem. 46 (1): 27–36. doi:10.1002/jcb.240460106. PMID 1874796.
  58. Epstein, Franklin H.; Vane, John R.; Änggård, Erik E.; Botting, Regina M. (1990). "Regulatory Functions of the Vascular Endothelium". New England Journal of Medicine. 323 (1): 27–36. doi:10.1056/NEJM199007053230106. ISSN 0028-4793.
  59. Rockey DC, Weisiger RA (1996). "Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance". Hepatology. 24 (1): 233–40. doi:10.1002/hep.510240137. PMID 8707268.
  60. Mosca P, Lee FY, Kaumann AJ, Groszmann RJ (1992). "Pharmacology of portal-systemic collaterals in portal hypertensive rats: role of endothelium". Am. J. Physiol. 263 (4 Pt 1): G544–50. PMID 1415713.
  61. Colombato LA, Albillos A, Groszmann RJ (1992). "Temporal relationship of peripheral vasodilatation, plasma volume expansion and the hyperdynamic circulatory state in portal-hypertensive rats". Hepatology. 15 (2): 323–8. PMID 1735537.
  62. Genecin P, Polio J, Colombato LA, Ferraioli G, Reuben A, Groszmann RJ (1990). "Bile acids do not mediate the hyperdynamic circulation in portal hypertensive rats". Am. J. Physiol. 259 (1 Pt 1): G21–5. PMID 2372062.
  63. Casadevall, María; Panés, Julián; Piqué, Josep M.; Marroni, Norma; Bosch, Jaume; Whittle, Brendan J. R. (1993). "Involvement of nitric oxide and prostaglandins in gastric mucosal hyperemia of portal-hypertensive anesthetized rats". Hepatology. 18 (3): 628–634. doi:10.1002/hep.1840180323. ISSN 0270-9139.
  64. Sieber CC, Groszmann RJ (1992). "In vitro hyporeactivity to methoxamine in portal hypertensive rats: reversal by nitric oxide blockade". Am. J. Physiol. 262 (6 Pt 1): G996–1001. PMID 1616049.
  65. Albillos A, Colombato LA, Lee FY, Groszmann RJ (1993). "Octreotide ameliorates vasodilatation and Na+ retention in portal hypertensive rats". Gastroenterology. 104 (2): 575–9. PMID 8425700.
  66. Calado RT, Brudno J, Mehta P; et al. (2011). "Constitutional telomerase mutations are genetic risk factors for cirrhosis". Hepatology. 53 (5): 1600–7. doi:10.1002/hep.24173. PMC 3082730. PMID 21520173. Unknown parameter |month= ignored (help)
  67. Freed EF, Prieto JL, McCann KL, McStay B, Baserga SJ (2012). "NOL11, Implicated in the Pathogenesis of North American Indian Childhood Cirrhosis, Is Required for Pre-rRNA Transcription and Processing". PLoS Genet. 8 (8): e1002892. doi:10.1371/journal.pgen.1002892. PMC 3420923. PMID 22916032. Unknown parameter |month= ignored (help)
  68. Freed EF, Baserga SJ (2010). "The C-terminus of Utp4, mutated in childhood cirrhosis, is essential for ribosome biogenesis". Nucleic Acids Res. 38 (14): 4798–806. doi:10.1093/nar/gkq185. PMC 2919705. PMID 20385600. Unknown parameter |month= ignored (help)
  69. Mandel H, Szargel R, Labay V, Elpeleg O, Saada A, Shalata A, Anbinder Y, Berkowitz D, Hartman C, Barak M, Eriksson S, Cohen N (2001). "The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA". Nat. Genet. 29 (3): 337–41. doi:10.1038/ng746. PMID 11687800.
  70. Vilarinho S, Sari S, Yilmaz G, Stiegler AL, Boggon TJ, Jain D, Akyol G, Dalgic B, Günel M, Lifton RP (2016). "Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension". Hepatology. 63 (6): 1977–86. doi:10.1002/hep.28499. PMC 4874872. PMID 26874653.
  71. 71.0 71.1 71.2 71.3 71.4 71.5 71.6 71.7 71.8 71.9 Kotani, Kohei; Kawabe, Joji; Morikawa, Hiroyasu; Akahoshi, Tomohiko; Hashizume, Makoto; Shiomi, Susumu (2015). "Comprehensive Screening of Gene Function and Networks by DNA Microarray Analysis in Japanese Patients with Idiopathic Portal Hypertension". Mediators of Inflammation. 2015: 1–10. doi:10.1155/2015/349215. ISSN 0962-9351.
  72. Blackburn MR, Lee CG, Young HW, Zhu Z, Chunn JL, Kang MJ, Banerjee SK, Elias JA (2003). "Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway". J. Clin. Invest. 112 (3): 332–44. doi:10.1172/JCI16815. PMC 166289. PMID 12897202.
  73. Chambers I, Frampton J, Goldfarb P, Affara N, McBain W, Harrison PR (1986). "The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the 'termination' codon, TGA". EMBO J. 5 (6): 1221–7. PMC 1166931. PMID 3015592.
  74. Chu FF, Esworthy RS, Doroshow JH, Doan K, Liu XF (1992). "Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents". Blood. 79 (12): 3233–8. PMID 1339300.
  75. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T (1997). "A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis". Nature. 387 (6633): 620–4. doi:10.1038/42506. PMID 9177352.
  76. Bäck M, Bu DX, Bränström R, Sheikine Y, Yan ZQ, Hansson GK (2005). "Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia". Proc. Natl. Acad. Sci. U.S.A. 102 (48): 17501–6. doi:10.1073/pnas.0505845102. PMC 1297663. PMID 16293697.
  77. 77.0 77.1 Campia U, Cardillo C, Panza JA (2004). "Ethnic differences in the vasoconstrictor activity of endogenous endothelin-1 in hypertensive patients". Circulation. 109 (25): 3191–5. doi:10.1161/01.CIR.0000130590.24107.D3. PMID 15148269.
  78. Inoue A, Yanagisawa M, Takuwa Y, Mitsui Y, Kobayashi M, Masaki T (1989). "The human preproendothelin-1 gene. Complete nucleotide sequence and regulation of expression". J. Biol. Chem. 264 (25): 14954–9. PMID 2670930.
  79. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995). "Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide". Nature. 378 (6552): 65–8. doi:10.1038/378065a0. PMID 7477288.
  80. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990). "CD44 is the principal cell surface receptor for hyaluronate". Cell. 61 (7): 1303–13. PMID 1694723.
  81. Nedvetzki S, Golan I, Assayag N, Gonen E, Caspi D, Gladnikoff M, Yayon A, Naor D (2003). "A mutation in a CD44 variant of inflammatory cells enhances the mitogenic interaction of FGF with its receptor". J. Clin. Invest. 111 (8): 1211–20. doi:10.1172/JCI17100. PMID 12697740.
  82. van Royen N, Voskuil M, Hoefer I, Jost M, de Graaf S, Hedwig F, Andert JP, Wormhoudt TA, Hua J, Hartmann S, Bode C, Buschmann I, Schaper W, van der Neut R, Piek JJ, Pals ST (2004). "CD44 regulates arteriogenesis in mice and is differentially expressed in patients with poor and good collateralization". Circulation. 109 (13): 1647–52. doi:10.1161/01.CIR.0000124066.35200.18. PMID 15023889.
  83. Derynck R, Akhurst RJ, Balmain A (2001). "TGF-beta signaling in tumor suppression and cancer progression". Nat. Genet. 29 (2): 117–29. doi:10.1038/ng1001-117. PMID 11586292.
  84. Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P (2000). "Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage". Proc. Natl. Acad. Sci. U.S.A. 97 (7): 3479–84. doi:10.1073/pnas.050420897. PMC 16265. PMID 10725360.
  85. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992). "Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line". Science. 258 (5088): 1650–4. PMID 1360704.
  86. Fuss IJ, Friend J, Yang Z, He JP, Hooda L, Boyer J, Xi L, Raffeld M, Kleiner DE, Heller T, Strober W (2013). "Nodular regenerative hyperplasia in common variable immunodeficiency". J. Clin. Immunol. 33 (4): 748–58. doi:10.1007/s10875-013-9873-6. PMC 3731765. PMID 23420139.
  87. Vaiphei K, Bhatia A, Sinha SK (2011). "Liver pathology in collagen vascular disorders highlighting the vascular changes within portal tracts". Indian J Pathol Microbiol. 54 (1): 25–31. doi:10.4103/0377-4929.77319. PMID 21393872.
  88. De Boer NK, Tuynman H, Bloemena E, Westerga J, Van Der Peet DL, Mulder CJ, Cuesta MA, Meuwissen SG, Van Nieuwkerk CM, Van Bodegraven AA (2008). "Histopathology of liver biopsies from a thiopurine-naïve inflammatory bowel disease cohort: prevalence of nodular regenerative hyperplasia". Scand. J. Gastroenterol. 43 (5): 604–8. doi:10.1080/00365520701800266. PMID 18415755.
  89. Allison MC, Mowat A, McCruden EA, McGregor E, Burt AD, Briggs JD, Junor BJ, Follett EA, MacSween RN, Mills PR (1992). "The spectrum of chronic liver disease in renal transplant recipients". Q. J. Med. 83 (301): 355–67. PMID 1438671.
  90. Gane E, Portmann B, Saxena R, Wong P, Ramage J, Williams R (1994). "Nodular regenerative hyperplasia of the liver graft after liver transplantation". Hepatology. 20 (1 Pt 1): 88–94. PMID 8020909.
  91. Imai Y, Minami Y, Miyoshi S, Kawata S, Saito R, Noda S, Tamura S, Nishikawa M, Tajima K, Tarui S (1986). "Idiopathic portal hypertension associated with Hashimoto's disease: report of three cases". Am. J. Gastroenterol. 81 (9): 791–5. PMID 2944377.
  92. Li X, Gao W, Chen J, Tang W (2000). "[Non-cirrhotic portal hypertension associated with autoimmune disease]". Zhonghua Wai Ke Za Zhi (in Chinese). 38 (2): 101–3. PMID 11831999.
  93. Kono K, Ohnishi K, Omata M, Saito M, Nakayama T, Hatano H, Nakajima Y, Sugita S, Okuda K (1988). "Experimental portal fibrosis produced by intraportal injection of killed nonpathogenic Escherichia coli in rabbits". Gastroenterology. 94 (3): 787–96. PMID 3276575.
  94. Siramolpiwat S, Seijo S, Miquel R, Berzigotti A, Garcia-Criado A, Darnell A, Turon F, Hernandez-Gea V, Bosch J, Garcia-Pagán JC (2014). "Idiopathic portal hypertension: natural history and long-term outcome". Hepatology. 59 (6): 2276–85. doi:10.1002/hep.26904. PMID 24155091.
  95. Maida I, Garcia-Gasco P, Sotgiu G, Rios MJ, Vispo ME, Martin-Carbonero L, Barreiro P, Mura MS, Babudieri S, Albertos S, Garcia-Samaniego J, Soriano V (2008). "Antiretroviral-associated portal hypertension: a new clinical condition? Prevalence, predictors and outcome". Antivir. Ther. (Lond.). 13 (1): 103–7. PMID 18389904.
  96. Vernier-Massouille G, Cosnes J, Lemann M, Marteau P, Reinisch W, Laharie D, Cadiot G, Bouhnik Y, De Vos M, Boureille A, Duclos B, Seksik P, Mary JY, Colombel JF (2007). "Nodular regenerative hyperplasia in patients with inflammatory bowel disease treated with azathioprine". Gut. 56 (10): 1404–9. doi:10.1136/gut.2006.114363. PMC 2000290. PMID 17504943.
  97. Calabrese E, Hanauer SB (2011). "Assessment of non-cirrhotic portal hypertension associated with thiopurine therapy in inflammatory bowel disease". J Crohns Colitis. 5 (1): 48–53. doi:10.1016/j.crohns.2010.08.007. PMID 21272804.
  98. Nevens F, Fevery J, Van Steenbergen W, Sciot R, Desmet V, De Groote J (1990). "Arsenic and non-cirrhotic portal hypertension. A report of eight cases". J. Hepatol. 11 (1): 80–5. PMID 2398270.
  99. Geubel AP, De Galocsy C, Alves N, Rahier J, Dive C (1991). "Liver damage caused by therapeutic vitamin A administration: estimate of dose-related toxicity in 41 cases". Gastroenterology. 100 (6): 1701–9. PMID 2019375.
  100. Girard M, Amiel J, Fabre M, Pariente D, Lyonnet S, Jacquemin E (2005). "Adams-Oliver syndrome and hepatoportal sclerosis: occasional association or common mechanism?". Am. J. Med. Genet. A. 135 (2): 186–9. doi:10.1002/ajmg.a.30724. PMID 15832360.
  101. Roulot D (2013). "Liver involvement in Turner syndrome". Liver Int. 33 (1): 24–30. doi:10.1111/liv.12007. PMID 23121401.
  102. de Lonlay P, Seta N (2009). "The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib". Biochim. Biophys. Acta. 1792 (9): 841–3. doi:10.1016/j.bbadis.2008.11.012. PMID 19101627.
  103. Sarin SK, Mehra NK, Agarwal A, Malhotra V, Anand BS, Taneja V (1987). "Familial aggregation in noncirrhotic portal fibrosis: a report of four families". Am. J. Gastroenterol. 82 (11): 1130–3. PMID 3499813.
  104. 104.0 104.1 104.2 Bayan K, Tüzün Y, Yilmaz S, Canoruc N, Dursun M (2009). "Analysis of inherited thrombophilic mutations and natural anticoagulant deficiency in patients with idiopathic portal hypertension". J. Thromb. Thrombolysis. 28 (1): 57–62. doi:10.1007/s11239-008-0244-8. PMID 18685811.
  105. Kumar S, Joshi R, Jain AP (2007). "Portal hypertension associated with sickle cell disease". Indian J Gastroenterol. 26 (2): 94. PMID 17558079.
  106. <CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)>
  107. "www.meddean.luc.edu".
  108. Amadalvarez - Own work, <"https://creativecommons.org/licenses/by-sa/4.0" title="Creative Commons Attribution-Share Alike 4.0">CC BY-SA 4.0, <"https://commons.wikimedia.org/w/index.php?curid=49669333">Link
  109. <http://wellcomeimages.org/indexplus/obf_images/29/b4/13f38971164f946a97f9d32ddd93.jpg>Gallery: <"http://wellcomeimages.org/indexplus/image/L0074357.html"><"http://creativecommons.org/licenses/by/4.0> CC BY 4.0, <"https://commons.wikimedia.org/w/index.php?curid=36297209">
  110. Pathology atlas, "cirrhosis".
  111. Mitchell, Richard (2012). Pocket companion to Robbins and Cotran pathologic basis of disease. Philadelphia, PA: Elsevier Saunders. ISBN 978-1416054542.
  112. "File:Cirrhosis high mag.jpg - Libre Pathology".
  113. "Esophageal varices - Libre Pathology".
  114. "File:Hepatic amyloidosis - high mag.jpg - Libre Pathology".
  115. "File:2 CEN NEC 1 680x512px.tif - Libre Pathology".

Template:WS Template:WH