Rhodopsin kinase

Jump to navigation Jump to search
G protein-coupled receptor kinase 1
Identifiers
SymbolGRK1
Alt. symbolsRHOK
Entrez6011
HUGO10013
OMIM180381
RefSeqNM_002929
UniProtQ15835
Other data
EC number2.7.11.14
LocusChr. 13 q34

Rhodopsin kinase (EC 2.7.11.14, cone opsin kinase, G-protein-coupled receptor kinase 1, GPCR kinase 1, GRK1, GRK7, opsin kinase, opsin kinase (phosphorylating), rhodopsin kinase (phosphorylating), RK, STK14) is a serine/threonine-specific protein kinase involved in phototransduction.[1][2][3][4][5][6][7][8][9] This enzyme catalyses the following chemical reaction

ATP + rhodopsin <math>\rightleftharpoons</math> ADP + phosphorhodopsin

Mutations in rhodopsin kinase are associated with a form of night blindness called Oguchi disease.[10]

More on Rhodopsin Kinase

Rhodopsin Kinase is involved in mammalian rod cells specifically with photo transduction and belongs to the family of G coupled-protein receptor kinases. This kinase, referred to as GRK1 is post-translationally modified by farnesylation and α-carboxyl methylation[11][12] GRK1 phosphorylates rhodopsin, resulting in partial photo-activation of rhodopsin, thus activating the dim flash response.[13] Dim flash response is activated in dim light and its ideal to de-activate the rod cell photoreceptor or rhodopsin over time.[14] GRK1 AND GRK7 exist and are isoforms of rhodopsin kinase. Studies have proven that in mice rod cells, GRK1 has competition with arrestin for the binding site of rhodopsin.[13] Arrestin-1 when bound to rhodopsin inhibits signaling and turns off photo-transduction completely.[15] As is true for many enzymes, rhodopsin kinase is regulated by the activity of other proteins. In this case, it is negatively regulated by recoverin.[16] In the dark state of the rod cells' recoverin inhibits rhodopsin kinase. Specifically, a study has proven that GRK1 acts on the cytoplasmic loops of rhodopsin both the second and third loops. The cytoplasmic loops act specifically where transducin binds to rhodopsin so this allows GRK1 and transducin to compete for the binding site on rhodopsin. With recoverin present, it exists between GRK1 and rhodopsin and it was shown that when bound competition between GRK1 and transducin suppressed.[17]

See also

References

  1. Lorenz W, Inglese J, Palczewski K, Onorato JJ, Caron MG, Lefkowitz RJ (October 1991). "The receptor kinase family: primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase". Proceedings of the National Academy of Sciences of the United States of America. 88 (19): 8715–9. doi:10.1073/pnas.88.19.8715. PMC 52580. PMID 1656454.
  2. Benovic JL, Mayor F, Somers RL, Caron MG, Lefkowitz RJ (1986). "Light-dependent phosphorylation of rhodopsin by beta-adrenergic receptor kinase". Nature. 321 (6073): 869–72. doi:10.1038/321869a0. PMID 3014340.
  3. Shichi H, Somers RL (October 1978). "Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase". The Journal of Biological Chemistry. 253 (19): 7040–6. PMID 690139.
  4. Palczewski K, McDowell JH, Hargrave PA (October 1988). "Purification and characterization of rhodopsin kinase". The Journal of Biological Chemistry. 263 (28): 14067–73. PMID 2844754.
  5. Weller M, Virmaux N, Mandel P (January 1975). "Light-stimulated phosphorylation of rhodopsin in the retina: the presence of a protein kinase that is specific for photobleached rhodopsin". Proceedings of the National Academy of Sciences of the United States of America. 72 (1): 381–5. doi:10.1073/pnas.72.1.381. PMC 432309. PMID 164024.
  6. Cha K, Bruel C, Inglese J, Khorana HG (September 1997). "Rhodopsin kinase: expression in baculovirus-infected insect cells, and characterization of post-translational modifications". Proceedings of the National Academy of Sciences of the United States of America. 94 (20): 10577–82. doi:10.1073/pnas.94.20.10577. PMC 23407. PMID 9380677.
  7. Khani SC, Abitbol M, Yamamoto S, Maravic-Magovcevic I, Dryja TP (August 1996). "Characterization and chromosomal localization of the gene for human rhodopsin kinase". Genomics. 35 (3): 571–6. doi:10.1006/geno.1996.0399. PMID 8812493.
  8. Chen CK, Zhang K, Church-Kopish J, Huang W, Zhang H, Chen YJ, Frederick JM, Baehr W (December 2001). "Characterization of human GRK7 as a potential cone opsin kinase". Molecular Vision. 7: 305–13. PMID 11754336.
  9. Willets JM, Challiss RA, Nahorski SR (December 2003). "Non-visual GRKs: are we seeing the whole picture?". Trends in Pharmacological Sciences. 24 (12): 626–33. doi:10.1016/j.tips.2003.10.003. PMID 14654303.
  10. Yamamoto S, Sippel KC, Berson EL, Dryja TP (February 1997). "Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness". Nature Genetics. 15 (2): 175–8. doi:10.1038/ng0297-175. PMID 9020843.
  11. Inglese J, Glickman JF, Lorenz W, Caron MG, Lefkowitz RJ (January 1992). "Isoprenylation of a protein kinase. Requirement of farnesylation/alpha-carboxyl methylation for full enzymatic activity of rhodopsin kinase". The Journal of Biological Chemistry. 267 (3): 1422–5. PMID 1730692.
  12. Kutuzov MA, Andreeva AV, Bennett N (December 2012). "Regulation of the methylation status of G protein-coupled receptor kinase 1 (rhodopsin kinase)". Cellular Signalling. 24 (12): 2259–67. doi:10.1016/j.cellsig.2012.07.020. PMID 22846544.
  13. 13.0 13.1 Sakurai K, Chen J, Khani SC, Kefalov VJ (April 2015). "Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase". The Journal of Biological Chemistry. 290 (14): 9239–50. doi:10.1074/jbc.M115.639591. PMC 4423708. PMID 25673692.
  14. Sakurai K, Young JE, Kefalov VJ, Khani SC (August 2011). "Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors". Investigative Ophthalmology & Visual Science. 52 (9): 6793–800. doi:10.1167/iovs.11-7158. PMC 3176010. PMID 21474765.
  15. Lodish H (2013). Molecular cell biology (Seventh edition. ed.). New York: Worth Publ. ISBN 978-1429234139.
  16. Chen CK, Inglese J, Lefkowitz RJ, Hurley JB (July 1995). "Ca(2+)-dependent interaction of recoverin with rhodopsin kinase". The Journal of Biological Chemistry. 270 (30): 18060–6. doi:10.1074/jbc.270.30.18060. PMID 7629115.
  17. Komolov KE, Senin II, Kovaleva NA, Christoph MP, Churumova VA, Grigoriev II, Akhtar M, Philippov PP, Koch KW (July 2009). "Mechanism of rhodopsin kinase regulation by recoverin". Journal of Neurochemistry. 110 (1): 72–9. doi:10.1111/j.1471-4159.2009.06118.x. PMID 19457073.

External links