Cyanosis surgery: Difference between revisions

Jump to navigation Jump to search
Line 47: Line 47:


== Tricuspid atresia ==
== Tricuspid atresia ==
[[Surgery]] is the mainstay of therapy for [[tricuspid atresia]].
** In the first 8 weeks of life if there are severe [[ Cyanosis]] and [[pulmonary obstruction]] and normal positioning [[ aorta]] and [[ pulmonary artery]], making a [[shunt]] between systemic [[subclavian artery]] to the [[ pulmonary artery ]] is necessary which is called [[Blalock -Taussig]] [[(BT shunt)]].<ref name="pmid26260095">{{cite journal |vauthors=Aykanat A, Yavuz T, Özalkaya E, Topçuoğlu S, Ovalı F, Karatekin G |title=Long-Term Prostaglandin E1 Infusion for Newborns with Critical Congenital Heart Disease |journal=Pediatr Cardiol |volume=37 |issue=1 |pages=131–4 |date=January 2016 |pmid=26260095 |doi=10.1007/s00246-015-1251-0 |url=}}</ref>
** If the [[pulmonary artery]] comes from the [[left ventricle]] and is overflowed, [[pulmonary artery]] banding is useful for lowering the [[pulmonary blood flow]].<ref name="pmid30811802">{{cite journal |vauthors=Boucek DM, Qureshi AM, Goldstein BH, Petit CJ, Glatz AC |title=Blalock-Taussig shunt versus patent ductus arteriosus stent as first palliation for ductal-dependent pulmonary circulation lesions: A review of the literature |journal=Congenit Heart Dis |volume=14 |issue=1 |pages=105–109 |date=January 2019 |pmid=30811802 |doi=10.1111/chd.12707 |url=}}</ref>
** In older children, [[bi-direction Glenn shunt]] which is the connection between [[superior vena cava]] to the [[ pulmonary artery]] is planned for transferring the blood to the pulmonary system.
**[[Fontan]] procedure is a conduit between the [[ inferior vena cava]] and the [[ pulmonary artery]] whether transfers the systemic venous blood to [[pulmonary circulation at the age of 2-3 years old.<ref name="pmid8238751">{{cite journal |vauthors=Norwood WI, Jacobs ML |title=Fontan's procedure in two stages |journal=Am. J. Surg. |volume=166 |issue=5 |pages=548–51 |date=November 1993 |pmid=8238751 |doi=10.1016/s0002-9610(05)81151-1 |url=}}</ref>


== Tetralogy of fallot ==
== Tetralogy of fallot ==

Revision as of 14:46, 25 October 2020

Cyanosis Microchapters

Home

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cyanosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cyanosis surgery On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cyanosis surgery

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cyanosis surgery

CDC on Cyanosis surgery

Cyanosis surgery in the news

Blogs on Cyanosis surgery

Directions to Hospitals Treating Cyanosis

Risk calculators and risk factors for Cyanosis surgery

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

Cardiac catheterization

Pulmonary atresia

  • Cardiac catheterization is done to evaluate the defect or defects of the heart; this procedure is much more invasive.
  • The patient will need to have a series of surgeries to improve the blood flow permanently.
  • The type of surgery recommended depends on the size of the right ventricle and the pulmonary artery. If they are normal in size and the right ventricle is able to pump blood, open heart surgery can be performed to make blood flow through the heart in a normal pattern.
  • If the right ventricle is small and unable to act as a pump, doctors may perform another type of operation called the Fontan procedure. In this two-stage procedure, the right atrium is disconnected from the pulmonary circulation.
  • The systemic venous return goes directly to the lungs, by-passing the heart. The first surgery will likely be performed shortly after birth. A shunt can be created between the aorta and the pulmonary artery to help increase blood flow to the lungs. As the child grows, so does the heart and the shunt may need revised in order to meet the body's requirements.
  • A cardiac catheterization procedure can be used as a diagnostic procedure, as well as initial treatment procedure as balloon atrial septostomy to improve mixing oxygenated blood and unoxygenated blood between the right and left atria.
  • Atrial Septostomy
  • Aspecial catheter with a balloon in the tip is used to create an opening in the atrial septum. The catheter is guided through the foramen ovale to the left atrium (LA).
  • Once the ballon is in the LA is inflated and then pulled back opening a bigger hole between the right atrium and the LA to mix blood.
  • If the hospital does not have a catheterization lab with skill physician to perform the ballon atrial septostomy, an intravenous medication called prostaglandin is administered to keep the ductus arteriousus from closing.

Transposition of great arteries

Palliative interventions

  • Cardiac catheterization
    • Rashkind balloon atrial septostomy: A balloon atrial septostomy is performed with a balloon catheter, which is inserted into a foramen ovale, PFO, or ASD and inflated to enlarge the opening in the atrial septum; this creates a shunt which allows a larger amount of red blood to enter the systemic circulation.
    • Balloon angioplasty: Angioplasty also requires a balloon catheter, which is used to stretch open a stenotic vessel; this relieves restricted blood flow, which could otherwise lead to CHF.
    • Endovascular stenting: An endovascular stent is sometimes placed in a stenotic vessel immediately following a balloon angioplasty to maintain the widened passage.
    • Angiography: Angiography involves using the catheter to release a contrast medium into the chambers and vessels of the heart; this process facilitates examining the flow of blood through the chambers during an echocardiogram, or shows the vessels clearly on a chest x-ray, MRI, or CT scan - this is of particular importance, as the coronary arteries must be carefully examined and "mapped out" prior to the corrective surgery. It is commonplace for any of these palliations to be performed on a TGA patient.

Moderate

  • Left anterior thoracotomy
  • Left lateral thoracotomy
  • Right lateral thoracotomy
  • Each of these procedures are performed through an incision between the ribs and visualized by echocardiogram; these are far less common than heart cath procedures.
  • Pulmonary artery banding is used in a small number of cases of d-TGA, usually when the corrective surgery needs to be delayed, to create an artificial stenosis in order to control pulmonary blood pressure; PAB involves placing a band around the pulmonary trunk, this band can then be quickly and easily adjusted when necessary.
  • An atrial septectomy is the surgical removal of the atrial septum; this is performed when a foramen ovale, PFO, or ASD are not present and additional shunting is required to raise the oxygen saturation of the blood.

Major

  • Median sternotomy
  • PAB (when intracardiac procedures also required)
  • Concomitant atrial septectomy

Total anomalus pulmonary venous return

Surgery should be performed as soon as possible in the patients of total anomalous pulmonary venous connection. The surgical procedure varies depending upon the anatomy of the TAPVC lesion.

  • Supracardiac and infracardiac TAPVC: Connection is created between the pulmonary veins and the left atrium. The vertical vein is tied up so that the abnormal blood flow could be prevented.
  • Pulmonary veins directly connected to the superiorvenacava: An intracardiac baffle is created that helps in transfer of blood from the right atrium, through atrial septum into the left atrium.
  • Intracardiac (pulmonary vein connected to the coronary sinus): Coronary sinus is incised and connected to left atrium.
  • Intracardiac (pulmonary vein opening directly into the right atrium): A interatrial connection is made and the blood is redirected from right atrium to left atrium.

Tricuspid atresia

Surgery is the mainstay of therapy for tricuspid atresia.

Tetralogy of fallot

Palliative surgery

Total Surgical Repair

  • The surgery generally involves:
    • Making incisions into the heart muscle, relieving the right ventricular outflow tract stenosis by careful resection of muscle
    • Repairing the VSD using a Gore-Tex or Dacron patch or a homograft.
    • Additional reparative or reconstructive work may be done on patients as required by their particular anatomy.
    • The repair could be done by either of the approaches i.e.transatrial or transpulmonary

Coarcitation of aorta

Indications for Surgery

  • There is a lack of consensus for the indications and the time for surgery. Some groups of surgeon consider balloon angioplasty and stenting as the initial approach and reserving surgery for more complicated conditions or treatment failures. Whereas, others consider surgical repair as the first line of therapy.
  • Surgery is the first choice in aortic coarctations involving:

 Surgical Techniques

  • The choice of technique depends on the patient's age at presentation, size, associated abnormalities, and anatomy of the coarctation.
  • Surgical approach - median sternotomy is preferred over left lateral thoracotomy, in complex arch repairs.
  • Subclavian flap aortoplasty is found to be the most commonly performed followed by resection in end-to-end anastomosis, patch aortoplasty, and bypass graft when the surgery is done during infancy. Whereas, in children and adolescent undergoing coarctation repair end-to-end anastomosis is commonest followed patch aortoplasty and subclavian flap aortoplasty.
  • Patch aortoplasty are less frequently used these days because of concerns regarding the development of aortic aneurysm at the site of surgery. 
  • Available Techniques:
    • Resection and end-to-end anastomosis
    • Patch aortoplasty
    • Left subclavian flap aortoplasty
    • Tubular bypass grafts
    • Combination techniques 

Atrial septal defect

  • Surgical closure is the most common method of treatment method for atrial septal defect and has been the gold standard for many years. Many surgeons prefer more minimally invasive techniques over the conventional sternotomy to avoid potentials for additional complications. Special consideration must be taken into account for the age of the patient and the size of the defect involved. Surgical closure is indicated for patients with primumsinus venosus and coronary sinus type of atrial septal defects. However, ostium secundum atrial septal defects are commonly treated by percutaneous closure. With uncomplicated atrial septal defect, (without pulmonary hypertension and other comorbidities) the post-surgical mortality is as low as 1%. Minimally invasive repair of atrial septal defect has been shown to be as successful as the conventional sternotomy. Although they have not been associated with reduced morbidity and mortality rates, they have been proven to have the advantage of being less invasive, less post-surgical complications, decreased hospital stay, and more cosmetic benefits.

Pulmonary hypertension

  • The choice of treatment for pulmonary hypertension requires the assessment of the clinical severity of the disease and the identification of any underlying cause.
  • Patients who have PH secondary to a medical condition such as left heart failurelung diseases, or thromboembolic disease should receive treatment for the underlying cause.
  • Patients who have pulmonary arterial hypertension (PAH) must undergo vasoreactivity testing in order to assist in the selection of the optimal therapy which includes calcium channel blockersendothelin receptor antagonistphosphodiesterase inhibitors, or prostanoids.
  • Surgical intervention such as atrial septostomy or lung transplantation should be considered among patients with pulmonary arterial hypertension who fail to improve on optimal therapy or when medical therapy is unavailable.
  • Failure of clinical improvement among PAH patients with WHO functional class II or III is defined as either:
    • A stable and unsatisfactory clinical status, or
    • An unstable and deteriorating Failure of clinical improvement among PAH patients with WHO functional class IV is defined as either:
    • Absence of quick improvement to a WHO functional class III or less, or
    • A stable and unsatisfactory clinical status

Atrial Septostomy

Lung Transplantation

  • Lung transplantation is considered in the treatment of patients with idiopathic PH, PH associated with congenital heart disease, or pulmonary veno-occlusive disease (PVOD) who fail to improve on optimal medical therapy.
  • Combined lung and heart transplantation might be considered in selected patients.
  • According to the Registry of the International Society for Heart and Lung Transplantation, the survival rates following lung transplantation are 61%, 49%, and 25 % at 3, 5, and 10 years respectively.

Pulmonary Thromboendarterectomy

  • Pulmonary thromboendarterectomy (PTE) is a surgical procedure that is used for the treatment of chronic thromboembolic pulmonary hypertension.
  • It is the surgical removal of an organized thrombus along with the lining of the pulmonary artery.
  • PTE is a large and very difficult procedure that is currently performed in a few select centers. Case series show remarkable success in most patients.
  • Treatment for hypoxic and miscellaneous varieties of PH have not been established. However, studies of several agents are currently enrolling patients. Many physicians will treat these diseases with the same medications as for PAH, until better options become available.

References

  1. Aykanat A, Yavuz T, Özalkaya E, Topçuoğlu S, Ovalı F, Karatekin G (January 2016). "Long-Term Prostaglandin E1 Infusion for Newborns with Critical Congenital Heart Disease". Pediatr Cardiol. 37 (1): 131–4. doi:10.1007/s00246-015-1251-0. PMID 26260095.
  2. Boucek DM, Qureshi AM, Goldstein BH, Petit CJ, Glatz AC (January 2019). "Blalock-Taussig shunt versus patent ductus arteriosus stent as first palliation for ductal-dependent pulmonary circulation lesions: A review of the literature". Congenit Heart Dis. 14 (1): 105–109. doi:10.1111/chd.12707. PMID 30811802.
  3. Norwood WI, Jacobs ML (November 1993). "Fontan's procedure in two stages". Am. J. Surg. 166 (5): 548–51. doi:10.1016/s0002-9610(05)81151-1. PMID 8238751.

Template:WH Template:WS