Irritable bowel syndrome pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 35: Line 35:
**Micro [[inflammation]] of the [[Gastrointestinal tract|gut]] causes activation of the [[Lymphocyte|lymphocytes]], [[Mast cell|mast cells]] and pro inflammatory [[Cytokine|cytokines]] that stimulate the [[enteric nervous system]] and lead to abnormal [[Viscus|visceral]] and [[Motor skill|motor]] responses within the [[Gastrointestinal tract|gastrointestinal]] tract.
**Micro [[inflammation]] of the [[Gastrointestinal tract|gut]] causes activation of the [[Lymphocyte|lymphocytes]], [[Mast cell|mast cells]] and pro inflammatory [[Cytokine|cytokines]] that stimulate the [[enteric nervous system]] and lead to abnormal [[Viscus|visceral]] and [[Motor skill|motor]] responses within the [[Gastrointestinal tract|gastrointestinal]] tract.
**[[Immunity (medical)|Immune]] activation due to GI [[infection]] also increases [[Enteroendocrine cells|enteroendocrine]] cells, calprotectin-positive [[Macrophage|macrophages]], [[Intraepithelial lymphocyte|intraepithelial]] [[Lymphocyte|lymphocytes]], and l[[Lamina propria|amina propria]] [[T cell|T cells]] which contribute directly to [[abdominal pain]] perception. <ref name="pmid20101257">{{cite journal |vauthors=Ohman L, Simrén M |title=Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions |journal=Nat Rev Gastroenterol Hepatol |volume=7 |issue=3 |pages=163–73 |year=2010 |pmid=20101257 |doi=10.1038/nrgastro.2010.4 |url=}}</ref><ref name="pmid22730468">{{cite journal |vauthors=Simrén M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, Verdu EF, Whorwell PJ, Zoetendal EG |title=Intestinal microbiota in functional bowel disorders: a Rome foundation report |journal=Gut |volume=62 |issue=1 |pages=159–76 |year=2013 |pmid=22730468 |pmc=3551212 |doi=10.1136/gutjnl-2012-302167 |url=}}</ref><ref name="pmid23580243">{{cite journal |vauthors=Ohman L, Simrén M |title=Intestinal microbiota and its role in irritable bowel syndrome (IBS) |journal=Curr Gastroenterol Rep |volume=15 |issue=5 |pages=323 |year=2013 |pmid=23580243 |doi=10.1007/s11894-013-0323-7 |url=}}</ref><ref name="pmid17148502">{{cite journal |vauthors=Posserud I, Stotzer PO, Björnsson ES, Abrahamsson H, Simrén M |title=Small intestinal bacterial overgrowth in patients with irritable bowel syndrome |journal=Gut |volume=56 |issue=6 |pages=802–8 |year=2007 |pmid=17148502 |pmc=1954873 |doi=10.1136/gut.2006.108712 |url=}}</ref><ref name="pmid22180058">{{cite journal |vauthors=Jeffery IB, O'Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EM, Simrén M |title=An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota |journal=Gut |volume=61 |issue=7 |pages=997–1006 |year=2012 |pmid=22180058 |doi=10.1136/gutjnl-2011-301501 |url=}}</ref><ref name="pmid19457422">{{cite journal |vauthors=Spiller R, Garsed K |title=Postinfectious irritable bowel syndrome |journal=Gastroenterology |volume=136 |issue=6 |pages=1979–88 |year=2009 |pmid=19457422 |doi=10.1053/j.gastro.2009.02.074 |url=}}</ref><ref name="pmid25611066">{{cite journal |vauthors=Joo YE |title=Alteration of fecal microbiota in patients with postinfectious irritable bowel syndrome |journal=J Neurogastroenterol Motil |volume=21 |issue=1 |pages=135–7 |year=2015 |pmid=25611066 |pmc=4288086 |doi=10.5056/jnm14133 |url=}}</ref><ref name="pmid10026328">{{cite journal |vauthors=Gwee KA, Leong YL, Graham C, McKendrick MW, Collins SM, Walters SJ, Underwood JE, Read NW |title=The role of psychological and biological factors in postinfective gut dysfunction |journal=Gut |volume=44 |issue=3 |pages=400–6 |year=1999 |pmid=10026328 |pmc=1727402 |doi= |url=}}</ref><ref name="pmid24646319">{{cite journal |vauthors=Nielsen HL, Engberg J, Ejlertsen T, Nielsen H |title=Psychometric scores and persistence of irritable bowel after Campylobacter concisus infection |journal=Scand. J. Gastroenterol. |volume=49 |issue=5 |pages=545–51 |year=2014 |pmid=24646319 |doi=10.3109/00365521.2014.886718 |url=}}</ref>
**[[Immunity (medical)|Immune]] activation due to GI [[infection]] also increases [[Enteroendocrine cells|enteroendocrine]] cells, calprotectin-positive [[Macrophage|macrophages]], [[Intraepithelial lymphocyte|intraepithelial]] [[Lymphocyte|lymphocytes]], and l[[Lamina propria|amina propria]] [[T cell|T cells]] which contribute directly to [[abdominal pain]] perception. <ref name="pmid20101257">{{cite journal |vauthors=Ohman L, Simrén M |title=Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions |journal=Nat Rev Gastroenterol Hepatol |volume=7 |issue=3 |pages=163–73 |year=2010 |pmid=20101257 |doi=10.1038/nrgastro.2010.4 |url=}}</ref><ref name="pmid22730468">{{cite journal |vauthors=Simrén M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, Verdu EF, Whorwell PJ, Zoetendal EG |title=Intestinal microbiota in functional bowel disorders: a Rome foundation report |journal=Gut |volume=62 |issue=1 |pages=159–76 |year=2013 |pmid=22730468 |pmc=3551212 |doi=10.1136/gutjnl-2012-302167 |url=}}</ref><ref name="pmid23580243">{{cite journal |vauthors=Ohman L, Simrén M |title=Intestinal microbiota and its role in irritable bowel syndrome (IBS) |journal=Curr Gastroenterol Rep |volume=15 |issue=5 |pages=323 |year=2013 |pmid=23580243 |doi=10.1007/s11894-013-0323-7 |url=}}</ref><ref name="pmid17148502">{{cite journal |vauthors=Posserud I, Stotzer PO, Björnsson ES, Abrahamsson H, Simrén M |title=Small intestinal bacterial overgrowth in patients with irritable bowel syndrome |journal=Gut |volume=56 |issue=6 |pages=802–8 |year=2007 |pmid=17148502 |pmc=1954873 |doi=10.1136/gut.2006.108712 |url=}}</ref><ref name="pmid22180058">{{cite journal |vauthors=Jeffery IB, O'Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EM, Simrén M |title=An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota |journal=Gut |volume=61 |issue=7 |pages=997–1006 |year=2012 |pmid=22180058 |doi=10.1136/gutjnl-2011-301501 |url=}}</ref><ref name="pmid19457422">{{cite journal |vauthors=Spiller R, Garsed K |title=Postinfectious irritable bowel syndrome |journal=Gastroenterology |volume=136 |issue=6 |pages=1979–88 |year=2009 |pmid=19457422 |doi=10.1053/j.gastro.2009.02.074 |url=}}</ref><ref name="pmid25611066">{{cite journal |vauthors=Joo YE |title=Alteration of fecal microbiota in patients with postinfectious irritable bowel syndrome |journal=J Neurogastroenterol Motil |volume=21 |issue=1 |pages=135–7 |year=2015 |pmid=25611066 |pmc=4288086 |doi=10.5056/jnm14133 |url=}}</ref><ref name="pmid10026328">{{cite journal |vauthors=Gwee KA, Leong YL, Graham C, McKendrick MW, Collins SM, Walters SJ, Underwood JE, Read NW |title=The role of psychological and biological factors in postinfective gut dysfunction |journal=Gut |volume=44 |issue=3 |pages=400–6 |year=1999 |pmid=10026328 |pmc=1727402 |doi= |url=}}</ref><ref name="pmid24646319">{{cite journal |vauthors=Nielsen HL, Engberg J, Ejlertsen T, Nielsen H |title=Psychometric scores and persistence of irritable bowel after Campylobacter concisus infection |journal=Scand. J. Gastroenterol. |volume=49 |issue=5 |pages=545–51 |year=2014 |pmid=24646319 |doi=10.3109/00365521.2014.886718 |url=}}</ref>
*'''Intrinsic gastrointestinal factors'''
==='''Intrinsic gastrointestinal factors'''===
**'''Motor abnormalities:'''
**'''Motor abnormalities:'''
***IBS is referred to as ‘[[spastic colon]]’ due to changes in [[Colon (anatomy)|colonic]] [[Motor coordination|motor]] function.
***IBS is referred to as ‘[[spastic colon]]’ due to changes in [[Colon (anatomy)|colonic]] [[Motor coordination|motor]] function.
Line 109: Line 109:
** There is an established relationship between [[Irritable bowel syndrome|IBS]] and [[polymorphisms]] in the gene for [[serotonin]] transport causing alteration in [[Intestine|intestinal]] [[peristalsis]] due to change in the [[serotonin]] reuptake efficacy.<ref name="pmid24060757">{{cite journal |vauthors=Grasberger H, Chang L, Shih W, Presson AP, Sayuk GS, Newberry RD, Karagiannides I, Pothoulakis C, Mayer E, Merchant JL |title=Identification of a functional TPH1 polymorphism associated with irritable bowel syndrome bowel habit subtypes |journal=Am. J. Gastroenterol. |volume=108 |issue=11 |pages=1766–74 |year=2013 |pmid=24060757 |pmc=4067697 |doi=10.1038/ajg.2013.304 |url=}}</ref><ref name="pmid21073637">{{cite journal |vauthors=Jun S, Kohen R, Cain KC, Jarrett ME, Heitkemper MM |title=Associations of tryptophan hydroxylase gene polymorphisms with irritable bowel syndrome |journal=Neurogastroenterol. Motil. |volume=23 |issue=3 |pages=233–9, e116 |year=2011 |pmid=21073637 |pmc=3057463 |doi=10.1111/j.1365-2982.2010.01623.x |url=}}</ref><ref name="pmid15138209">{{cite journal |vauthors=Kim HJ, Camilleri M, Carlson PJ, Cremonini F, Ferber I, Stephens D, McKinzie S, Zinsmeister AR, Urrutia R |title=Association of distinct alpha(2) adrenoceptor and serotonin transporter polymorphisms with constipation and somatic symptoms in functional gastrointestinal disorders |journal=Gut |volume=53 |issue=6 |pages=829–37 |year=2004 |pmid=15138209 |pmc=1774073 |doi= |url=}}</ref><ref name="pmid15361494">{{cite journal |vauthors=Yeo A, Boyd P, Lumsden S, Saunders T, Handley A, Stubbins M, Knaggs A, Asquith S, Taylor I, Bahari B, Crocker N, Rallan R, Varsani S, Montgomery D, Alpers DH, Dukes GE, Purvis I, Hicks GA |title=Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women |journal=Gut |volume=53 |issue=10 |pages=1452–8 |year=2004 |pmid=15361494 |pmc=1774243 |doi=10.1136/gut.2003.035451 |url=}}</ref>   
** There is an established relationship between [[Irritable bowel syndrome|IBS]] and [[polymorphisms]] in the gene for [[serotonin]] transport causing alteration in [[Intestine|intestinal]] [[peristalsis]] due to change in the [[serotonin]] reuptake efficacy.<ref name="pmid24060757">{{cite journal |vauthors=Grasberger H, Chang L, Shih W, Presson AP, Sayuk GS, Newberry RD, Karagiannides I, Pothoulakis C, Mayer E, Merchant JL |title=Identification of a functional TPH1 polymorphism associated with irritable bowel syndrome bowel habit subtypes |journal=Am. J. Gastroenterol. |volume=108 |issue=11 |pages=1766–74 |year=2013 |pmid=24060757 |pmc=4067697 |doi=10.1038/ajg.2013.304 |url=}}</ref><ref name="pmid21073637">{{cite journal |vauthors=Jun S, Kohen R, Cain KC, Jarrett ME, Heitkemper MM |title=Associations of tryptophan hydroxylase gene polymorphisms with irritable bowel syndrome |journal=Neurogastroenterol. Motil. |volume=23 |issue=3 |pages=233–9, e116 |year=2011 |pmid=21073637 |pmc=3057463 |doi=10.1111/j.1365-2982.2010.01623.x |url=}}</ref><ref name="pmid15138209">{{cite journal |vauthors=Kim HJ, Camilleri M, Carlson PJ, Cremonini F, Ferber I, Stephens D, McKinzie S, Zinsmeister AR, Urrutia R |title=Association of distinct alpha(2) adrenoceptor and serotonin transporter polymorphisms with constipation and somatic symptoms in functional gastrointestinal disorders |journal=Gut |volume=53 |issue=6 |pages=829–37 |year=2004 |pmid=15138209 |pmc=1774073 |doi= |url=}}</ref><ref name="pmid15361494">{{cite journal |vauthors=Yeo A, Boyd P, Lumsden S, Saunders T, Handley A, Stubbins M, Knaggs A, Asquith S, Taylor I, Bahari B, Crocker N, Rallan R, Varsani S, Montgomery D, Alpers DH, Dukes GE, Purvis I, Hicks GA |title=Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women |journal=Gut |volume=53 |issue=10 |pages=1452–8 |year=2004 |pmid=15361494 |pmc=1774243 |doi=10.1136/gut.2003.035451 |url=}}</ref>   
** Increased [[serotonin]] production contributes to [[postprandial]] symptoms in [[Irritable bowel syndrome|IBS]] patients, hence providing the rationale for the therapeutic efficacy of 5-HT 3 receptor [[Receptor antagonist|antagonists]] and 5-HT 4 receptor [[Agonist|agonists]] on symptoms in [[Irritable bowel syndrome|IBS]] patients.<ref name="pmid17241888">{{cite journal |vauthors=Gershon MD, Tack J |title=The serotonin signaling system: from basic understanding to drug development for functional GI disorders |journal=Gastroenterology |volume=132 |issue=1 |pages=397–414 |year=2007 |pmid=17241888 |doi=10.1053/j.gastro.2006.11.002 |url=}}</ref><ref name="pmid22071696">{{cite journal |vauthors=Camilleri M |title=Pharmacology of the new treatments for lower gastrointestinal motility disorders and irritable bowel syndrome |journal=Clin. Pharmacol. Ther. |volume=91 |issue=1 |pages=44–59 |year=2012 |pmid=22071696 |doi=10.1038/clpt.2011.261 |url=}}</ref>
** Increased [[serotonin]] production contributes to [[postprandial]] symptoms in [[Irritable bowel syndrome|IBS]] patients, hence providing the rationale for the therapeutic efficacy of 5-HT 3 receptor [[Receptor antagonist|antagonists]] and 5-HT 4 receptor [[Agonist|agonists]] on symptoms in [[Irritable bowel syndrome|IBS]] patients.<ref name="pmid17241888">{{cite journal |vauthors=Gershon MD, Tack J |title=The serotonin signaling system: from basic understanding to drug development for functional GI disorders |journal=Gastroenterology |volume=132 |issue=1 |pages=397–414 |year=2007 |pmid=17241888 |doi=10.1053/j.gastro.2006.11.002 |url=}}</ref><ref name="pmid22071696">{{cite journal |vauthors=Camilleri M |title=Pharmacology of the new treatments for lower gastrointestinal motility disorders and irritable bowel syndrome |journal=Clin. Pharmacol. Ther. |volume=91 |issue=1 |pages=44–59 |year=2012 |pmid=22071696 |doi=10.1038/clpt.2011.261 |url=}}</ref>
'''[[Psychosocial]] factors and [[CNS]] dysregulation'''
==='''[[Psychosocial]] factors and [[CNS]] dysregulation'''===
* [[Symptom]] exacerbation occurs in [[Irritable bowel syndrome|IBS]] patients with emotional disturbances,[[Stress (medicine)|stress]], [[anxiety]] or [[depression]]. Traumatic experiences before 18 years of age directly shape adult connectivity in the executive control network consisting of structures such as the [[Insular cortex|insula]], anterior [[cingulate cortex]] and the [[thalamus]].  
* [[Symptom]] exacerbation occurs in [[Irritable bowel syndrome|IBS]] patients with emotional disturbances,[[Stress (medicine)|stress]], [[anxiety]] or [[depression]]. Traumatic experiences before 18 years of age directly shape adult connectivity in the executive control network consisting of structures such as the [[Insular cortex|insula]], anterior [[cingulate cortex]] and the [[thalamus]].  
* Semipermanent/permanent changes in complex [[Nervous system|neural]] circuits lead to central pain amplification and contribute to [[abdominal pain]] in IBS patients.<ref name="pmid27061107">{{cite journal |vauthors=Park SH, Videlock EJ, Shih W, Presson AP, Mayer EA, Chang L |title=Adverse childhood experiences are associated with irritable bowel syndrome and gastrointestinal symptom severity |journal=Neurogastroenterol. Motil. |volume=28 |issue=8 |pages=1252–60 |year=2016 |pmid=27061107 |pmc=4956522 |doi=10.1111/nmo.12826 |url=}}</ref><ref name="pmid25003944">{{cite journal |vauthors=Gupta A, Kilpatrick L, Labus J, Tillisch K, Braun A, Hong JY, Ashe-McNalley C, Naliboff B, Mayer EA |title=Early adverse life events and resting state neural networks in patients with chronic abdominal pain: evidence for sex differences |journal=Psychosom Med |volume=76 |issue=6 |pages=404–12 |year=2014 |pmid=25003944 |pmc=4113723 |doi=10.1097/PSY.0000000000000089 |url=}}</ref>
* Semipermanent/permanent changes in complex [[Nervous system|neural]] circuits lead to central pain amplification and contribute to [[abdominal pain]] in IBS patients.<ref name="pmid27061107">{{cite journal |vauthors=Park SH, Videlock EJ, Shih W, Presson AP, Mayer EA, Chang L |title=Adverse childhood experiences are associated with irritable bowel syndrome and gastrointestinal symptom severity |journal=Neurogastroenterol. Motil. |volume=28 |issue=8 |pages=1252–60 |year=2016 |pmid=27061107 |pmc=4956522 |doi=10.1111/nmo.12826 |url=}}</ref><ref name="pmid25003944">{{cite journal |vauthors=Gupta A, Kilpatrick L, Labus J, Tillisch K, Braun A, Hong JY, Ashe-McNalley C, Naliboff B, Mayer EA |title=Early adverse life events and resting state neural networks in patients with chronic abdominal pain: evidence for sex differences |journal=Psychosom Med |volume=76 |issue=6 |pages=404–12 |year=2014 |pmid=25003944 |pmc=4113723 |doi=10.1097/PSY.0000000000000089 |url=}}</ref>

Revision as of 02:09, 31 October 2017

Irritable bowel syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Irritable bowel syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Monitoring

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Case Studies

Case #1

Irritable bowel syndrome pathophysiology On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Irritable bowel syndrome pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Irritable bowel syndrome pathophysiology

CDC on Irritable bowel syndrome pathophysiology

Irritable bowel syndrome pathophysiology in the news

Blogs on Irritable bowel syndrome pathophysiology

Directions to Hospitals Treating Irritable bowel syndrome

Risk calculators and risk factors for Irritable bowel syndrome pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

IBS is caused by the complex interaction of various factors such as intrinsic gastrointestinal factors, CNS dysregulation and psychosocial factors, genetic and environmental factors. Intrinsic gastrointestinal factors include motor abnormalities, visceral hypersensitivity, immune activation and mucosal inflammation, altered gut microbiota and abnormal serotonin pathways. Visceral hypersensitivity is a decreased threshold for the perception of visceral stimuli that affects spinal excitability brain stem and cortical modulation, activation of specific gastrointestinal mediators and recruitment of peripheral silent nociceptors. Immune activation and mucosal inflammation involves an interaction of lymphocytes, mast cells and proinflammatory cytokines. Environmental factors encompass dietary changes and infections. Psychosocial factors such as stress, anxiety and depression directly shape adult connectivity in the executive control network consisting of structures such as the insula, anterior cingulate cortex and the thalamus. Semipermanent/permanent changes in complex neural circuits lead to central pain amplification and contribute to abdominal pain in IBS patients. The dorsolateral prefrontal cortex activity (responsible for vigilance and alertness of the human brain) and the mid-cingulate cortex (engaged in attention pathways and responses) is reduced in IBS patients, which may lead to alterations in the subjective sensations of pain. Genetic factors also play a role in IBS. It has high twin concordance and familial aggregation. It is associated with Single nucleotide polymorphisms (SNPs) in genes involved in immune activation, neuropeptide hormone function, oxidative stress, nociception, permeability of the GI tract, host-microbiota interaction, inflammation, and TNF activity.

Pathophysiology

Pathogenesis

IBS is an interplay between four main factors:


 
 
 
 
 
CNS dysregulation and psychosocial factors
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Intrinsic gastrointestinal factors:
Motor abnormalities
Visceral hypersensitivity
Immune activation and mucosal inflammation
• Altered gut microbiota
• Abnormal serotonin pathways
 
 
IRRITABLE BOWEL SYNDROME
 
 
 
Genetic factors:
Twin concordance
• Familial aggregation
Single Nucleotide Polymorphisms(SNPs)
TNF polymorphism
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Environmental factors
 
 
 

Environmental factors

Intrinsic gastrointestinal factors


 
 
 
 
 
 
 
 
 
 
 
 
Spinal hyperexcitability
 
Activation of
N-methyl D aspartate (NMDA) receptor
nitric oxide
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Central (brainstem and cortical) modulation
 
Increased activation of:
• Anterior cingulate cortex
Thalamus
insula
 
 
 
 
 
 
 
 
 
 
 
Visceral hypersensitivity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Activation of specific gastrointestinal mediators
 
Kinins and serotonin activation lead to afferent nerve fiber sensitization
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recruitment of peripheral silent nociceptors
 
Increased end organ sensitivity due to hormonal or immune activation