P2RX7: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
{{Purinergic signalling}}
| update_page = yes
'''P2X purinoceptor 7''' is a [[protein]] that in humans is encoded by the ''P2RX7'' [[gene]].<ref name="pmid9038151">{{cite journal |vauthors=Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A | title = The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA | journal = J Biol Chem | volume = 272 | issue = 9 | pages = 5482–6 |date=Apr 1997 | pmid = 9038151 | pmc =  | doi =10.1074/jbc.272.9.5482  }}</ref><ref name="pmid9826911">{{cite journal |vauthors=Buell GN, Talabot F, Gos A, Lorenz J, Lai E, Morris MA, Antonarakis SE | title = Gene structure and chromosomal localization of the human P2X7 receptor | journal = Receptors Channels | volume = 5 | issue = 6 | pages = 347–54 |date=Feb 1999 | pmid = 9826911 | pmc =  | doi =  }}</ref>
| require_manual_inspection = no
 
| update_protein_box = yes
The product of this gene belongs to the family of [[purinergic receptor|purinoceptors]] for [[Adenosine triphosphate|ATP]]. Multiple alternatively spliced variants which would encode different isoforms have been identified although some fit [[nonsense-mediated decay]] criteria.<ref>{{cite web | title = Entrez Gene: P2RX7 purinergic receptor P2X, ligand-gated ion channel, 7| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5027| accessdate = }}</ref>
| update_summary = yes
 
| update_citations = yes
The receptor is found in the central and peripheral nervous systems, in [[microglia]], in [[macrophages]], in uterine [[endometrium]], and in the [[retina]].<ref name="pmid11549725">{{cite journal |vauthors=Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J | title = Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems | journal = J. Neurosci. | volume = 21 | issue = 18 | pages = 7143–52 |date=September 2001 | pmid = 11549725 | doi = }}</ref><ref name="pmid9364482">{{cite journal |vauthors=Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G | title = Tissue distribution of the P2X7 receptor | journal = Neuropharmacology | volume = 36 | issue = 9 | pages = 1277–83 |date=September 1997 | pmid = 9364482 | doi =10.1016/S0028-3908(97)00140-8 }}</ref><ref name="pmid10943851">{{cite journal |vauthors=Slater NM, Barden JA, Murphy CR | title = Distributional changes of purinergic receptor subtypes (P2X 1-7) in uterine epithelial cells during early pregnancy | journal = Histochem. J. | volume = 32 | issue = 6 | pages = 365–72 |date=June 2000 | pmid = 10943851 | doi =10.1023/A:1004017714702 }}</ref><ref name="pmid12655509">{{cite journal |vauthors=Ishii K, Kaneda M, Li H, Rockland KS, Hashikawa T | title = Neuron-specific distribution of P2X7 purinergic receptors in the monkey retina | journal = J. Comp. Neurol. | volume = 459 | issue = 3 | pages = 267–77 |date=May 2003 | pmid = 12655509 | doi = 10.1002/cne.10608 }}</ref> The P2X<SUB>7</SUB> receptor also serves as a [[pattern recognition receptor]] for extracellular ATP-mediated [[apoptosis|apoptotic cell death]],<ref name="pmid22349510">{{cite journal |vauthors=Kawano A, Tsukimoto M, Noguchi T, Hotta N, Harada H, Takenouchi T, Kitani H, Kojima S | title = Involvement of P2X4 receptor in P2X7 receptor-dependent cell death of mouse macrophages | journal = Biochem. Biophys. Res. Commun. | volume = 419 | issue = 2 | pages = 374–80 |date=March 2012 | pmid = 22349510 | doi = 10.1016/j.bbrc.2012.01.156 }}</ref> regulation of receptor trafficking,<ref name="pmid19189228">{{cite journal |vauthors=Qu Y, Dubyak GR | title = P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways | journal = Purinergic Signal. | volume = 5 | issue = 2 | pages = 163–73 |date=June 2009 | pmid = 19189228 | pmc = 2686822 | doi = 10.1007/s11302-009-9132-8 }}</ref> [[mast cell]] [[degranulation]],<ref name="P2x7 gastrointestinal MC review" /><ref name="pmid26910735">{{cite journal | vauthors = Wareham KJ, Seward EP | title = P2X7 receptors induce degranulation in human mast cells | journal = Purinergic Signal. | volume = 12 | issue = 2 | pages = 235–246 | date = June 2016 | pmid = 26910735 | pmc = 4854833 | doi = 10.1007/s11302-016-9497-4 | url = }}</ref> and [[inflammation]].<ref name="P2x7 gastrointestinal MC review">{{cite journal | vauthors = Kurashima Y, Kiyono H | title = New era for mucosal mast cells: their roles in inflammation, allergic immune responses and adjuvant development | journal = Exp. Mol. Med. | volume = 46 | issue = | pages = e83 | year = 2014 | pmid = 24626169 | pmc = 3972796 | doi = 10.1038/emm.2014.7 }}</ref><ref name="pmid26910735" /><ref name="DAMPs PAMPs and PRRs">{{cite journal | vauthors = Russo MV, McGavern DB | title = Immune Surveillance of the CNS following Infection and Injury | journal = Trends Immunol. | volume = 36 | issue = 10 | pages = 637–650 | date = October 2015 | pmid = 26431941 | doi = 10.1016/j.it.2015.08.002 | pmc=4592776}}</ref>
}}
 
== Structure and kinetics ==
 
The P2X<SUB>7</SUB> subunits can form [[homomeric]] receptors only with a typical [[P2X purinoreceptor|P2X receptor]] structure.<ref name="pmid10037762">{{cite journal |vauthors=Torres GE, Egan TM, Voigt MM | title = Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners | journal = J. Biol. Chem. | volume = 274 | issue = 10 | pages = 6653–9 |date=March 1999 | pmid = 10037762 | doi =10.1074/jbc.274.10.6653 }}</ref>
The P2X<SUB>7</SUB> receptor is a [[ligand-gated ion channel|ligand-gated cation channel]] that opens in response to ATP binding and leads to cell [[depolarization]]. The P2X<SUB>7</SUB> receptor requires higher levels of ATP than other P2X receptors; however, the response can be potentiated by reducing the concentration of divalent cations such as [[calcium]] or [[magnesium]].<ref name="pmid12270951"/> Continued binding leads to increased permeability to N-methyl-D-glucamine (NMDG<sup>+</sup>).<ref name="pmid12270951">{{cite journal | author = North RA | title = Molecular physiology of P2X receptors | journal = Physiol. Rev. | volume = 82 | issue = 4 | pages = 1013–67 |date=October 2002 | pmid = 12270951 | doi = 10.1152/physrev.00015.2002 }}</ref>  P2X<SUB>7</SUB> receptors do not become [[Desensitization (medicine)|desensitized]] readily and continued signaling leads to the aforementioned increased permeability and an increase in current amplitude.<ref name="pmid12270951"/>
 
== Pharmacology ==
 
=== Agonists ===
 
P2X<SUB>7</SUB> receptors respond to BzATP more readily than ATP.<ref name="pmid12270951"/> [[Adenosine diphosphate|ADP]] and [[Adenosine monophosphate|AMP]] are weak agonists of P2X<SUB>7</SUB> receptors, but a brief exposure to ATP can increase their effectiveness.<ref name="pmid12270951"/> [[Glutathione]] has been proposed to act as a P2X<sub>7</sub> receptor [[agonist]] when present at milimolar levels, inducing [[calcium]] transients and [[Gamma-Aminobutyric acid|GABA]] release from [[retina]]l cells.<ref>{{cite journal | vauthors = Freitas HR, Ferraz G, Ferreira GC, Ribeiro-Resende VT, Chiarini LB, do Nascimento JL, Matos Oliveira KR, Pereira Tde L, Ferreira LG, Kubrusly RC, Faria RX, Herculano AM, Reis RA | title = Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells | journal = PLoS One | volume = 11 | issue = 4 | pages = e0153677 | date = April 2016 | pmid = 27078878 | pmc = 4831842 | doi = 10.1371/journal.pone.0153677 }}</ref><ref>{{cite journal | vauthors = Freitas HR, Reis RA | title = Glutathione induces GABA release through P2X7R activation on Müller glia | journal = Neurogenesis | volume = 4 | issue = 1 | pages = e1283188 | date = February 2017 | pmid = 28229088 | pmc = 5305167 | doi = 10.1080/23262133.2017.1283188 }}</ref>
 
=== Antagonists ===
 
The P2X<SUB>7</SUB> receptor current can be blocked by [[zinc]], [[calcium]], [[magnesium]], and [[copper]].<ref name="pmid12270951"/> P2X<SUB>7</SUB> receptors are sensitive to pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid ([[PPADS]]) and relatively insensitive to [[suramin]], but the suramin analog, NF279, is much more effective. Oxidized ATP (OxATP) and [[Brilliant Blue G]] has also been used for blocking P2X<sub>7</sub> in inflammation.<ref name="oxatp">{{cite journal|last1=Wang|first1=Xiaohai|last2=Arcuino|first2=Gregory|last3=Takano|first3=Takahiro|last4=Lin|first4=Jane|last5=Peng|first5=Wei Guo|last6=Wan|first6=Pinglan|last7=Li|first7=Pingjia|last8=Xu|first8=Qiwu|last9=Liu|first9=Qing Song|last10=Goldman|first10=Steven A|last11=Nedergaard|first11=Maiken|title=P2X7 receptor inhibition improves recovery after spinal cord injury|journal=Nature Medicine|date=18 July 2004|volume=10|issue=8|pages=821–827|doi=10.1038/nm1082|PMID=15258577}}</ref><ref name=bluerats>{{ cite journal | last1 = Peng | first1 = W. | last2 = Cotrina | first2 = M. L. | last3 = Han | first3 = X. | last4 = Yu | first4 = H. | last5 = Bekar | first5 = L. | last6 = Blum | first6 = L. | last7 = Takano | first7 = T. | last8 = Tian | first8 = G. F. | last9 = Goldman | first9 = S. A. | last10 = Nedergaard | first10 = M. | title = Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 106 | pages = 12489–12493 | year = 2009 | doi = 10.1073/pnas.0902531106 | pmid = 19666625 | pmc = 2718350 | issue = 30 | display-authors = 8 }}</ref> Other blockers include the large organic cations calmidazolium (a [[calmodulin]] antagonist) and [[KN-62]] (a [[Ca2+/calmodulin-dependent protein kinase|CaM kinase II]] antagonist).<ref name="pmid12270951"/>
 
== Receptor trafficking ==
 
In [[microglia]], P2X<SUB>7</SUB> receptors are found mostly on the cell surface.<ref name="pmid19304656">{{cite journal |vauthors=Boumechache M, Masin M, Edwardson JM, Górecki DC, Murrell-Lagnado R | title = Analysis of assembly and trafficking of native P2X4 and P2X7 receptor complexes in rodent immune cells | journal = J. Biol. Chem. | volume = 284 | issue = 20 | pages = 13446–54 |date=May 2009 | pmid = 19304656 | pmc = 2679444 | doi = 10.1074/jbc.M901255200 }}</ref> Conserved [[cysteine]] residues located in the [[carboxyl]] terminus seem to be important for receptor trafficking to the cell membrane.<ref name="pmid22286664">{{cite journal |vauthors=Jindrichova M, Kuzyk P, Li S, Stojilkovic SS, Zemkova H | title = Conserved ectodomain cysteines are essential for rat P2X7 receptor trafficking | journal = Purinergic Signal. | volume = 8 | issue = 2 | pages = 317–25 |date=June 2012 | pmid = 22286664 | pmc = 3350585 | doi = 10.1007/s11302-012-9291-x }}</ref>  These receptors are upregulated in response to peripheral nerve injury.<ref name="pmid21924325">{{cite journal |vauthors=Kobayashi K, Takahashi E, Miyagawa Y, Yamanaka H, Noguchi K | title = Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model | journal = Neurosci. Lett. | volume = 504 | issue = 1 | pages = 57–61 |date=October 2011 | pmid = 21924325 | doi = 10.1016/j.neulet.2011.08.058 }}</ref>
 
In melanocytic cells P2X<sub>7</sub> gene expression may be regulated by [[Microphthalmia-associated transcription factor|MITF]].<ref name="pmid19067971">{{cite journal |vauthors=Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E | title = Novel MITF targets identified using a two-step DNA microarray strategy | journal = Pigment Cell Melanoma Res | volume = 21 | issue = 6 | pages = 665–76 |date=December 2008 | pmid = 19067971 | doi = 10.1111/j.1755-148X.2008.00505.x }}</ref>
 
== Recruitment of pannexin ==
 
Activation of the P2X<sub>7</sub> receptor by [[Adenosine triphosphate#Extracellular signalling|ATP]] leads to recruitment of [[pannexin]] pores<ref name="pmid18596211">{{cite journal |vauthors=Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E | title = P2X7 receptor-Pannexin1 complex: pharmacology and signaling | journal = Am. J. Physiol., Cell Physiol. | volume = 295 | issue = 3 | pages = C752–60 |date=September 2008 | pmid = 18596211 | pmc = 2544446 | doi = 10.1152/ajpcell.00228.2008 }}</ref> which allow small molecules such as ATP to leak out of cells. This allows further activation of [[purinergic receptors]] and physiological responses such a spreading cytoplasmic [[Astrocyte#Calcium waves|waves of calcium]].<ref name="pmid19763139">{{cite journal |vauthors=Boison D, Chen JF, Fredholm BB | title = Adenosine signaling and function in glial cells | journal = Cell Death Differ. | volume = 17 | issue = 7 | pages = 1071–82 |date=July 2010 | pmid = 19763139 | pmc = 2885470 | doi = 10.1038/cdd.2009.131 }}</ref> Moreover, this could be responsible for ATP-dependent lysis of [[macrophage]]s through the formation of membrane pores permeable to larger molecules.
 
== Clinical significance ==
 
=== Neuropathic pain ===
 
[[Microglia]]l P2X<SUB>7</SUB> receptors are thought to be involved in [[neuropathic pain]] because blockade or deletion of P2X<SUB>7</SUB> receptors results in decreased responses to pain, as demonstrated ''[[in vivo]]''.<ref name="pmid16982702">{{cite journal |vauthors=Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF | title = A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat | journal = J. Pharmacol. Exp. Ther. | volume = 319 | issue = 3 | pages = 1376–85 | date =December 2006 | month =  | pmid = 16982702 | doi = 10.1124/jpet.106.111559 }}</ref><ref name="pmid15777864">{{cite journal |vauthors=Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN | title = Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain | journal = Pain | volume = 114 | issue = 3 | pages = 386–96 |date=April 2005 | pmid = 15777864 | doi = 10.1016/j.pain.2005.01.002 }}</ref> Moreover, P2X<SUB>7</SUB> receptor signaling increases the release of proinflammatory molecules such as [[IL1B|IL-1β]], [[interleukin 6|IL-6]], and [[Tumor necrosis factor-alpha|TNF-α]].<ref name="pmid20071520">{{cite journal |vauthors=Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M | title = P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide | journal = J. Neurosci. | volume = 30 | issue = 2 | pages = 573–82 |date=January 2010 | pmid = 20071520 | pmc = 2880485 | doi = 10.1523/JNEUROSCI.3295-09.2010 }}</ref><ref name="pmid11579142">{{cite journal |vauthors=Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K | title = Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5 | journal = J. Neurochem. | volume = 78 | issue = 6 | pages = 1339–49 |date=September 2001 | pmid = 11579142 | doi =10.1046/j.1471-4159.2001.00514.x }}</ref><ref name="pmid10936177">{{cite journal |vauthors=Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y | title = Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia | journal = J. Neurochem. | volume = 75 | issue = 3 | pages = 965–72 |date=September 2000 | pmid = 10936177 | doi =10.1046/j.1471-4159.2000.0750965.x  }}</ref> In addition, P2X<SUB>7</SUB> receptors have been linked to increases in proinflammatory [[cytokine]]s such as [[CXCL2]] and [[CCL3]].<ref name="pmid20477948">{{cite journal |vauthors=Shiratori M, Tozaki-Saitoh H, Yoshitake M, Tsuda M, Inoue K | title = P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways | journal = J. Neurochem. | volume = 114 | issue = 3 | pages = 810–9 |date=August 2010 | pmid = 20477948 | doi = 10.1111/j.1471-4159.2010.06809.x }}</ref><ref name="pmid19014371">{{cite journal |vauthors=Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Inoue K | title = Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT | journal = J. Neurochem. | volume = 108 | issue = 1 | pages = 115–25 |date=January 2009 | pmid = 19014371 | doi = 10.1111/j.1471-4159.2008.05744.x }}</ref> Interestingly, P2X<SUB>7</SUB> receptors are also linked to [[P2RX4|P2X<SUB>4</SUB>]] receptors, which are also associated with neuropathic pain mediated by microglia.<ref name="pmid19304656" />
 
=== Osteoporosis ===
 
Mutations in this gene have been associated to low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women.<ref name="10.1038/ejhg.2011.245">{{cite journal |vauthors=Gartland A, Skarratt KK, Hocking LJ, Parsons C, Stokes L, Jørgensen NR, Fraser WD, Reid DM, Gallagher JA, Wiley JS | title = Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women | journal = Eur. J. Hum. Genet. | volume = 20 | issue = 5 | pages = 559–64 |date=May 2012 | pmid = 22234152 | doi = 10.1038/ejhg.2011.245 | pmc = 3330223 }}</ref>
 
=== Diabetes ===
 
The ATP/P2X7R pathway may trigger T-cell attacks on the pancreas, rendering it unable to produce insulin. This autoimmune response may be an early mechanism by which the onset of diabetes is caused.<ref>{{cite web | title = Silencing immune attacks in type 1 diabetes| url = http://vectorblog.org/2013/06/silencing-immune-attacks-in-type-1-diabetes-without/#more-8597| date= June 10, 2013|accessdate=June 15, 2013 }}</ref><ref>{{cite web | title = Boston Children’s Hospital Finds Root Cause of Diabetes| url = http://www.bostonmagazine.com/health/blog/2013/06/13/boston-childrens-hospital-found-the-root-cause-of-diabetes/| date= June 13, 2013|accessdate=June 15, 2013}}</ref>
 
==Researches==


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
=== Possible link to hepatic fibrosis ===
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Purinergic receptor P2X, ligand-gated ion channel, 7
| HGNCid = 8537
| Symbol = P2RX7
| AltSymbols =; MGC20089; P2X7
| OMIM = 602566
| ECnumber = 
| Homologene = 1925
| MGIid = 1339957
| GeneAtlas_image1 = PBB_GE_P2RX7_207091_at_tn.png
| Function = {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0004931 |text = ATP-gated cation channel activity}} {{GNF_GO|id=GO:0005216 |text = ion channel activity}} {{GNF_GO|id=GO:0005524 |text = ATP binding}}
| Component = {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0006811 |text = ion transport}} {{GNF_GO|id=GO:0006812 |text = cation transport}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0030501 |text = positive regulation of bone mineralization}} {{GNF_GO|id=GO:0045779 |text = negative regulation of bone resorption}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 5027
    | Hs_Ensembl = ENSG00000089041
    | Hs_RefseqProtein = NP_002553
    | Hs_RefseqmRNA = NM_002562
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 12
    | Hs_GenLoc_start = 120055061
    | Hs_GenLoc_end = 120108239
    | Hs_Uniprot = Q99572
    | Mm_EntrezGene = 18439
    | Mm_Ensembl = ENSMUSG00000029468
    | Mm_RefseqmRNA = NM_001038839
    | Mm_RefseqProtein = NP_001033928
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 5
    | Mm_GenLoc_start = 122904528
    | Mm_GenLoc_end = 122951908
    | Mm_Uniprot = Q3UN00
  }}
}}
'''Purinergic receptor P2X, ligand-gated ion channel, 7''', also known as '''P2RX7''', is a human [[gene]].


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
One study in mice showed that blockade of P2X7 receptors attenuates onset of liver fibrosis.<ref name=" pmid = 24247209 ">{{cite journal | author = Huang C1 | title = P2X7 blockade attenuates mouse liver fibrosis. | journal = J Mol Med Rep | volume = 9 | issue = 1|date=Jan 2014 | pmid = 24247209 | url = http://www.spandidos-publications.com/mmr/9/1/57 | pages = 57–62 | doi=10.3892/mmr.2013.1807}}</ref>
{{PBB_Summary
| section_title =
| summary_text = The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel and is responsible for ATP-dependent lysis of macrophages through the formation of membrane pores permeable to large molecules. Activation of this nuclear receptor by ATP in the cytoplasm may be a mechanism by which cellular activity can be coupled to changes in gene expression. Multiple alternatively spliced variants which would encode different isoforms have been identified although some fit nonsense-mediated decay (NMD) criteria.<ref>{{cite web | title = Entrez Gene: P2RX7 purinergic receptor P2X, ligand-gated ion channel, 7| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5027| accessdate = }}</ref>
}}


==See also==
== See also ==
* [[Purinergic receptor]]
* [[Purinergic receptor]]
* [[P2X receptor]]
* [[P2X receptor]]


==References==
== References ==
{{reflist|2}}
{{Reflist|35em}}
==Further reading==
 
{{refbegin | 2}}
== Further reading ==
*{{cite journal  | author= Gartland A, Buckley KA, Hipskind RA, Bowler WB, Gallagher JA. |title= P2 receptors in bone--modulation of osteoclast formation and activity via P2X7 activation. |journal= Crit Rev Eukaryot Gene Expr. |volume= 13 |issue= 2-4 |pages=237-42 |year= 2003 |pmid= 14696970 |doi=  }}
{{refbegin|35em}}
*{{cite journal  | author= Gartland A, Buckley KA, Bowler WB, Gallagher JA. |title= Blockade of the pore-forming P2X7 receptor inhibits formation of multinucleated human osteoclasts in vitro. |journal= Calcif Tissue Int. |volume= 72 |issue= 4 |pages= 361-9 |year= 2003 |pmid= 12874700 |doi=  }}
*{{cite journal  |vauthors=Gartland A, Buckley KA, Hipskind RA, Bowler WB, Gallagher JA |title= P2 receptors in bone--modulation of osteoclast formation and activity via P2X7 activation |journal= Crit Rev Eukaryot Gene Expr. |volume= 13 |issue= 2–4 |pages=237–42 |year= 2003 |pmid= 14696970 |doi=10.1615/CritRevEukaryotGeneExpr.v13.i24.150 }}
*{{cite journal  | author= Bowler WB, Buckley KA, Gartland A, Hipskind RA, Bilbe G, Gallagher JA. |title= Extracellular nucleotide signaling: a mechanism for integrating local and systemic responses in the activation of bone remodeling. |journal= Bone |volume= 28 |issue= 5 |pages= 507-12 |year=  |pmid= 11344050 |doi=  }}
*{{cite journal  |vauthors=Gartland A, Buckley KA, Bowler WB, Gallagher JA |title= Blockade of the pore-forming P2X7 receptor inhibits formation of multinucleated human osteoclasts in vitro |journal= Calcif Tissue Int. |volume= 73|issue= 4 |pages= 361–9 |year= 2003 |pmid= 12874700 |doi=10.1007/s00223-002-2098-y }}
*{{cite journal  | author= Gartland A, Hipskind RA, Gallagher JA, Bowler WB. |title= Expression of a P2X7 receptor by a subpopulation of human osteoblasts. |journal= J Bone Miner Res . |volume= 16 |issue= 5 |pages= 846-56 |year= 2001 |pmid= 11341329 |doi=  }}
*{{cite journal  |vauthors=Bowler WB, Buckley KA, Gartland A, Hipskind RA, Bilbe G, Gallagher JA |title= Extracellular nucleotide signaling: a mechanism for integrating local and systemic responses in the activation of bone remodeling |journal= Bone |volume= 28 |issue= 5 |pages= 507–12 |year=  2001|pmid= 11344050 |doi=10.1016/S8756-3282(01)00430-6 }}
*{{cite journal  | author= Gartland A, Buckley KA, Hipskind RA, Perry MJ, Tobias JH, Buell G, Chessell I, Bowler WB, Gallagher JA. |title= Multinucleated osteoclast formation in vivo and in vitro by P2X7 receptor-deficient mice. |journal= Crit Rev Eukaryot Gene Expr. |volume=13 |issue= 2-4 |pages= 243-53 |year= 2003 |pmid= 14696971 |doi= }}
*{{cite journal  |vauthors=Gartland A, Hipskind RA, Gallagher JA, Bowler WB |title= Expression of a P2X7 receptor by a subpopulation of human osteoblasts |journal= J Bone Miner Res |volume= 16 |issue= 5 |pages= 846–56 |year= 2001 |pmid= 11341329 |doi=10.1359/jbmr.2001.16.5.846 }}
{{PBB_Further_reading  
*{{cite journal  |vauthors=Gartland A, Buckley KA, Hipskind RA, Perry MJ, Tobias JH, Buell G, Chessell I, Bowler WB, Gallagher JA |title= Multinucleated osteoclast formation in vivo and in vitro by P2X7 receptor-deficient mice |journal= Crit Rev Eukaryot Gene Expr. |volume=13 |issue= 2–4 |pages= 243–53 |year= 2003 |pmid= 14696971 |doi=10.1615/CritRevEukaryotGeneExpr.v13.i24.160 }}
| citations =  
{{PBB_Further_reading
*{{cite journal  | author=North RA |title=Molecular physiology of P2X receptors. |journal=Physiol. Rev. |volume=82 |issue= 4 |pages= 1013-67 |year= 2002 |pmid= 12270951 |doi= 10.1152/physrev.00015.2002 }}
| citations =
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi=  }}
*{{cite journal  |vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8  }}
*{{cite journal  | author=Rassendren F, Buell GN, Virginio C, ''et al.'' |title=The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. |journal=J. Biol. Chem. |volume=272 |issue= 9 |pages= 5482-6 |year= 1997 |pmid= 9038151 |doi=  }}
*{{cite journal  | author=Suzuki Y |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |name-list-format=vanc| author2=Yoshitomo-Nakagawa K  | author3=Maruyama K  | display-authors=| last4=Suyama  | first4=| last5=Sugano  | first5=S }}
*{{cite journal  | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi=  }}
*{{cite journal  | author=Gu BJ |title=A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor |journal=J. Biol. Chem. |volume=276 |issue= 14 |pages= 11135–42 |year= 2001 |pmid= 11150303 |doi= 10.1074/jbc.M010353200 |name-list-format=vanc| author2=Zhang W  | author3=Worthington RA  | display-authors=| last4=Sluyter  | first4=| last5=Dao-Ung  | first5=| last6=Petrou  | first6=S  | last7=Barden  | first7=JA  | last8=Wiley | first8=JS }}
*{{cite journal  | author=Buell GN, Talabot F, Gos A, ''et al.'' |title=Gene structure and chromosomal localization of the human P2X7 receptor. |journal=Recept. Channels |volume=5 |issue= 6 |pages= 347-54 |year= 1999 |pmid= 9826911 |doi=  }}
*{{cite journal  | author=Kim M |title=Proteomic and functional evidence for a P2X7 receptor signalling complex |journal=EMBO J. |volume=20 |issue= 22 |pages= 6347–58 |year= 2002 |pmid= 11707406 |doi= 10.1093/emboj/20.22.6347  | pmc=125721  |name-list-format=vanc| author2=Jiang LH  | author3=Wilson HL  | display-authors=3  | last4=North  | first4=RA  | last5=Surprenant  | first5=A }}
*{{cite journal  | author=Gu BJ, Zhang W, Worthington RA, ''et al.'' |title=A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. |journal=J. Biol. Chem. |volume=276 |issue= 14 |pages= 11135-42 |year= 2001 |pmid= 11150303 |doi= 10.1074/jbc.M010353200 }}
*{{cite journal  | author=Worthington RA |title=Point mutations confer loss of ATP-induced human P2X(7) receptor function |journal=FEBS Lett. |volume=512 |issue= 1–3 |pages= 43–6 |year= 2002 |pmid= 11852049 |doi=10.1016/S0014-5793(01)03311-7 |name-list-format=vanc| author2=Smart ML | author3=Gu BJ | display-authors=3  | last4=Williams  | first4=DA  | last5=Petrou  | first5=| last6=Wiley  | first6=JS  | last7=Barden  | first7=JA }}
*{{cite journal  | author=Kim M, Jiang LH, Wilson HL, ''et al.'' |title=Proteomic and functional evidence for a P2X7 receptor signalling complex. |journal=EMBO J. |volume=20 |issue= 22 |pages= 6347-58 |year= 2002 |pmid= 11707406 |doi= 10.1093/emboj/20.22.6347 }}
*{{cite journal  | author=Wiley JS |title=A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukaemia: a molecular study |journal=Lancet |volume=359 |issue= 9312 |pages= 1114–9 |year= 2002 |pmid= 11943260 |doi=10.1016/S0140-6736(02)08156-4 |name-list-format=vanc| author2=Dao-Ung LP  | author3=Gu BJ  | display-authors=| last4=Sluyter  | first4=Ronald  | last5=Shemon  | first5=Anne N  | last6=Li  | first6=Changping | last7=Taper  | first7=John  | last8=Gallo  | first8=John  | last9=Manoharan  | first9=Arumugam  }}
*{{cite journal | author=Worthington RA, Smart ML, Gu BJ, ''et al.'' |title=Point mutations confer loss of ATP-induced human P2X(7) receptor function. |journal=FEBS Lett. |volume=512 |issue= 1-3 |pages= 43-6 |year= 2002 |pmid= 11852049 |doi=  }}
*{{cite journal  |vauthors=Wilson HL, Wilson SA, Surprenant A, North RA |title=Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus |journal=J. Biol. Chem. |volume=277 |issue= 37 |pages= 34017–23 |year= 2002 |pmid= 12107182 |doi= 10.1074/jbc.M205120200 }}
*{{cite journal  | author=Wiley JS, Dao-Ung LP, Gu BJ, ''et al.'' |title=A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukaemia: a molecular study. |journal=Lancet |volume=359 |issue= 9312 |pages= 1114-9 |year= 2002 |pmid= 11943260 |doi=  }}
*{{cite journal  |vauthors=Atkinson L, Milligan CJ, Buckley NJ, Deuchars J |title=An ATP-gated ion channel at the cell nucleus |journal=Nature |volume=420 |issue= 6911 |pages= 42 |year= 2002 |pmid= 12422208 |doi= 10.1038/420042a }}
*{{cite journal  | author=Wilson HL, Wilson SA, Surprenant A, North RA |title=Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. |journal=J. Biol. Chem. |volume=277 |issue= 37 |pages= 34017-23 |year= 2002 |pmid= 12107182 |doi= 10.1074/jbc.M205120200 }}
*{{cite journal  |vauthors=Sluyter R, Wiley JS |title=Extracellular adenosine 5'-triphosphate induces a loss of CD23 from human dendritic cells via activation of P2X7 receptors |journal=Int. Immunol. |volume=14 |issue= 12 |pages= 1415–21 |year= 2003 |pmid= 12456589 |doi=10.1093/intimm/dxf111  }}
*{{cite journal | author=Atkinson L, Milligan CJ, Buckley NJ, Deuchars J |title=An ATP-gated ion channel at the cell nucleus. |journal=Nature |volume=420 |issue= 6911 |pages= 42 |year= 2002 |pmid= 12422208 |doi= 10.1038/420042a }}
*{{cite journal  | author=Strausberg RL |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899  | pmc=139241 |name-list-format=vanc| author2=Feingold EA  | author3=Grouse LH  | display-authors=3  | last4=Derge  | first4=JG  | last5=Klausner  | first5=RD  | last6=Collins  | first6=FS  | last7=Wagner  | first7=L  | last8=Shenmen  | first8=CM  | last9=Schuler | first9=GD }}
*{{cite journal  | author=Budagian V, Bulanova E, Brovko L, ''et al.'' |title=Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. |journal=J. Biol. Chem. |volume=278 |issue= 3 |pages= 1549-60 |year= 2003 |pmid= 12424250 |doi= 10.1074/jbc.M206383200 }}
*{{cite journal  | author=Wiley JS |title=An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor |journal=J. Biol. Chem. |volume=278 |issue= 19 |pages= 17108–13 |year= 2003 |pmid= 12586825 |doi= 10.1074/jbc.M212759200 |name-list-format=vanc| author2=Dao-Ung LP | author3=Li C | display-authors=3  | last4=Shemon  | first4=AN  | last5=Gu  | first5=BJ  | last6=Smart  | first6=ML  | last7=Fuller  | first7=SJ | last8=Barden  | first8=JA  | last9=Petrou  | first9=S }}
*{{cite journal  | author=Sluyter R, Wiley JS |title=Extracellular adenosine 5'-triphosphate induces a loss of CD23 from human dendritic cells via activation of P2X7 receptors. |journal=Int. Immunol. |volume=14 |issue= 12 |pages= 1415-21 |year= 2003 |pmid= 12456589 |doi= }}
*{{cite journal  |vauthors=Barden JA, Sluyter R, Gu BJ, Wiley JS |title=Specific detection of non-functional human P2X(7) receptors in HEK293 cells and B-lymphocytes |journal=FEBS Lett. |volume=538 |issue= 1–3 |pages= 159–62 |year= 2003 |pmid= 12633871 |doi=10.1016/S0014-5793(03)00172-8  }}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  |vauthors=Verhoef PA, Estacion M, Schilling W, Dubyak GR |title=P2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1 beta release |journal=J. Immunol. |volume=170 |issue= 11 |pages= 5728–38 |year= 2003 |pmid= 12759456 |doi=  10.4049/jimmunol.170.11.5728}}
*{{cite journal  | author=Wiley JS, Dao-Ung LP, Li C, ''et al.'' |title=An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. |journal=J. Biol. Chem. |volume=278 |issue= 19 |pages= 17108-13 |year= 2003 |pmid= 12586825 |doi= 10.1074/jbc.M212759200 }}
*{{cite journal  | author=Greig AV |title=Purinergic receptors are part of a functional signaling system for proliferation and differentiation of human epidermal keratinocytes |journal=J. Invest. Dermatol. |volume=120 |issue= 6 |pages= 1007–15 |year= 2003 |pmid= 12787128 |doi=10.1046/j.1523-1747.2003.12261.x  |name-list-format=vanc| author2=Linge C  | author3=Terenghi G  | display-authors=3  | last4=McGrouther  | first4=D Angus  | last5=Burnstock  | first5=Geoffrey  }}
*{{cite journal | author=Barden JA, Sluyter R, Gu BJ, Wiley JS |title=Specific detection of non-functional human P2X(7) receptors in HEK293 cells and B-lymphocytes. |journal=FEBS Lett. |volume=538 |issue= 1-3 |pages= 159-62 |year= 2003 |pmid= 12633871 |doi=  }}
*{{cite journal  | author=Denlinger LC |title=Mutation of a dibasic amino acid motif within the C terminus of the P2X7 nucleotide receptor results in trafficking defects and impaired function |journal=J. Immunol. |volume=171 |issue= 3 |pages= 1304–11 |year= 2003 |pmid= 12874219 |doi=  10.4049/jimmunol.171.3.1304|name-list-format=vanc| author2=Sommer JA  | author3=Parker K  | display-authors=3  | last4=Gudipaty  | first4=L  | last5=Fisette  | first5=PL  | last6=Watters  | first6=JW  | last7=Proctor  | first7=RA  | last8=Dubyak  | first8=GR  | last9=Bertics  | first9=PJ }}
*{{cite journal  | author=Verhoef PA, Estacion M, Schilling W, Dubyak GR |title=P2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1 beta release. |journal=J. Immunol. |volume=170 |issue= 11 |pages= 5728-38 |year= 2003 |pmid= 12759456 |doi=  }}
*{{cite journal | author=Greig AV, Linge C, Terenghi G, ''et al.'' |title=Purinergic receptors are part of a functional signaling system for proliferation and differentiation of human epidermal keratinocytes. |journal=J. Invest. Dermatol. |volume=120 |issue= 6 |pages= 1007-15 |year= 2003 |pmid= 12787128 |doi=  }}
*{{cite journal  | author=Denlinger LC, Sommer JA, Parker K, ''et al.'' |title=Mutation of a dibasic amino acid motif within the C terminus of the P2X7 nucleotide receptor results in trafficking defects and impaired function. |journal=J. Immunol. |volume=171 |issue= 3 |pages= 1304-11 |year= 2003 |pmid= 12874219 |doi=  }}
}}
}}
{{refend}}
{{refend}}
Line 94: Line 89:
* {{MeshName|P2RX7+protein,+human}}
* {{MeshName|P2RX7+protein,+human}}


{{membrane-protein-stub}}
{{Ligand-gated ion channels}}
{{Purinergics}}
{{NLM content}}
{{NLM content}}
{{Ligand-gated ion channels}}
 
[[Category:Ion channels]]
[[Category:Ion channels]]
{{WikiDoc Sources}}

Revision as of 20:15, 2 December 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

P2X purinoceptor 7 is a protein that in humans is encoded by the P2RX7 gene.[1][2]

The product of this gene belongs to the family of purinoceptors for ATP. Multiple alternatively spliced variants which would encode different isoforms have been identified although some fit nonsense-mediated decay criteria.[3]

The receptor is found in the central and peripheral nervous systems, in microglia, in macrophages, in uterine endometrium, and in the retina.[4][5][6][7] The P2X7 receptor also serves as a pattern recognition receptor for extracellular ATP-mediated apoptotic cell death,[8] regulation of receptor trafficking,[9] mast cell degranulation,[10][11] and inflammation.[10][11][12]

Structure and kinetics

The P2X7 subunits can form homomeric receptors only with a typical P2X receptor structure.[13] The P2X7 receptor is a ligand-gated cation channel that opens in response to ATP binding and leads to cell depolarization. The P2X7 receptor requires higher levels of ATP than other P2X receptors; however, the response can be potentiated by reducing the concentration of divalent cations such as calcium or magnesium.[14] Continued binding leads to increased permeability to N-methyl-D-glucamine (NMDG+).[14] P2X7 receptors do not become desensitized readily and continued signaling leads to the aforementioned increased permeability and an increase in current amplitude.[14]

Pharmacology

Agonists

P2X7 receptors respond to BzATP more readily than ATP.[14] ADP and AMP are weak agonists of P2X7 receptors, but a brief exposure to ATP can increase their effectiveness.[14] Glutathione has been proposed to act as a P2X7 receptor agonist when present at milimolar levels, inducing calcium transients and GABA release from retinal cells.[15][16]

Antagonists

The P2X7 receptor current can be blocked by zinc, calcium, magnesium, and copper.[14] P2X7 receptors are sensitive to pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) and relatively insensitive to suramin, but the suramin analog, NF279, is much more effective. Oxidized ATP (OxATP) and Brilliant Blue G has also been used for blocking P2X7 in inflammation.[17][18] Other blockers include the large organic cations calmidazolium (a calmodulin antagonist) and KN-62 (a CaM kinase II antagonist).[14]

Receptor trafficking

In microglia, P2X7 receptors are found mostly on the cell surface.[19] Conserved cysteine residues located in the carboxyl terminus seem to be important for receptor trafficking to the cell membrane.[20] These receptors are upregulated in response to peripheral nerve injury.[21]

In melanocytic cells P2X7 gene expression may be regulated by MITF.[22]

Recruitment of pannexin

Activation of the P2X7 receptor by ATP leads to recruitment of pannexin pores[23] which allow small molecules such as ATP to leak out of cells. This allows further activation of purinergic receptors and physiological responses such a spreading cytoplasmic waves of calcium.[24] Moreover, this could be responsible for ATP-dependent lysis of macrophages through the formation of membrane pores permeable to larger molecules.

Clinical significance

Neuropathic pain

Microglial P2X7 receptors are thought to be involved in neuropathic pain because blockade or deletion of P2X7 receptors results in decreased responses to pain, as demonstrated in vivo.[25][26] Moreover, P2X7 receptor signaling increases the release of proinflammatory molecules such as IL-1β, IL-6, and TNF-α.[27][28][29] In addition, P2X7 receptors have been linked to increases in proinflammatory cytokines such as CXCL2 and CCL3.[30][31] Interestingly, P2X7 receptors are also linked to P2X4 receptors, which are also associated with neuropathic pain mediated by microglia.[19]

Osteoporosis

Mutations in this gene have been associated to low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women.[32]

Diabetes

The ATP/P2X7R pathway may trigger T-cell attacks on the pancreas, rendering it unable to produce insulin. This autoimmune response may be an early mechanism by which the onset of diabetes is caused.[33][34]

Researches

Possible link to hepatic fibrosis

One study in mice showed that blockade of P2X7 receptors attenuates onset of liver fibrosis.[35]

See also

References

  1. Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A (Apr 1997). "The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA". J Biol Chem. 272 (9): 5482–6. doi:10.1074/jbc.272.9.5482. PMID 9038151.
  2. Buell GN, Talabot F, Gos A, Lorenz J, Lai E, Morris MA, Antonarakis SE (Feb 1999). "Gene structure and chromosomal localization of the human P2X7 receptor". Receptors Channels. 5 (6): 347–54. PMID 9826911.
  3. "Entrez Gene: P2RX7 purinergic receptor P2X, ligand-gated ion channel, 7".
  4. Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (September 2001). "Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems". J. Neurosci. 21 (18): 7143–52. PMID 11549725.
  5. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (September 1997). "Tissue distribution of the P2X7 receptor". Neuropharmacology. 36 (9): 1277–83. doi:10.1016/S0028-3908(97)00140-8. PMID 9364482.
  6. Slater NM, Barden JA, Murphy CR (June 2000). "Distributional changes of purinergic receptor subtypes (P2X 1-7) in uterine epithelial cells during early pregnancy". Histochem. J. 32 (6): 365–72. doi:10.1023/A:1004017714702. PMID 10943851.
  7. Ishii K, Kaneda M, Li H, Rockland KS, Hashikawa T (May 2003). "Neuron-specific distribution of P2X7 purinergic receptors in the monkey retina". J. Comp. Neurol. 459 (3): 267–77. doi:10.1002/cne.10608. PMID 12655509.
  8. Kawano A, Tsukimoto M, Noguchi T, Hotta N, Harada H, Takenouchi T, Kitani H, Kojima S (March 2012). "Involvement of P2X4 receptor in P2X7 receptor-dependent cell death of mouse macrophages". Biochem. Biophys. Res. Commun. 419 (2): 374–80. doi:10.1016/j.bbrc.2012.01.156. PMID 22349510.
  9. Qu Y, Dubyak GR (June 2009). "P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways". Purinergic Signal. 5 (2): 163–73. doi:10.1007/s11302-009-9132-8. PMC 2686822. PMID 19189228.
  10. 10.0 10.1 Kurashima Y, Kiyono H (2014). "New era for mucosal mast cells: their roles in inflammation, allergic immune responses and adjuvant development". Exp. Mol. Med. 46: e83. doi:10.1038/emm.2014.7. PMC 3972796. PMID 24626169.
  11. 11.0 11.1 Wareham KJ, Seward EP (June 2016). "P2X7 receptors induce degranulation in human mast cells". Purinergic Signal. 12 (2): 235–246. doi:10.1007/s11302-016-9497-4. PMC 4854833. PMID 26910735.
  12. Russo MV, McGavern DB (October 2015). "Immune Surveillance of the CNS following Infection and Injury". Trends Immunol. 36 (10): 637–650. doi:10.1016/j.it.2015.08.002. PMC 4592776. PMID 26431941.
  13. Torres GE, Egan TM, Voigt MM (March 1999). "Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners". J. Biol. Chem. 274 (10): 6653–9. doi:10.1074/jbc.274.10.6653. PMID 10037762.
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 North RA (October 2002). "Molecular physiology of P2X receptors". Physiol. Rev. 82 (4): 1013–67. doi:10.1152/physrev.00015.2002. PMID 12270951.
  15. Freitas HR, Ferraz G, Ferreira GC, Ribeiro-Resende VT, Chiarini LB, do Nascimento JL, Matos Oliveira KR, Pereira Tde L, Ferreira LG, Kubrusly RC, Faria RX, Herculano AM, Reis RA (April 2016). "Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells". PLoS One. 11 (4): e0153677. doi:10.1371/journal.pone.0153677. PMC 4831842. PMID 27078878.
  16. Freitas HR, Reis RA (February 2017). "Glutathione induces GABA release through P2X7R activation on Müller glia". Neurogenesis. 4 (1): e1283188. doi:10.1080/23262133.2017.1283188. PMC 5305167. PMID 28229088.
  17. Wang, Xiaohai; Arcuino, Gregory; Takano, Takahiro; Lin, Jane; Peng, Wei Guo; Wan, Pinglan; Li, Pingjia; Xu, Qiwu; Liu, Qing Song; Goldman, Steven A; Nedergaard, Maiken (18 July 2004). "P2X7 receptor inhibition improves recovery after spinal cord injury". Nature Medicine. 10 (8): 821–827. doi:10.1038/nm1082. PMID 15258577.
  18. Peng, W.; Cotrina, M. L.; Han, X.; Yu, H.; Bekar, L.; Blum, L.; Takano, T.; Tian, G. F.; et al. (2009). "Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury". Proceedings of the National Academy of Sciences of the United States of America. 106 (30): 12489–12493. doi:10.1073/pnas.0902531106. PMC 2718350. PMID 19666625.
  19. 19.0 19.1 Boumechache M, Masin M, Edwardson JM, Górecki DC, Murrell-Lagnado R (May 2009). "Analysis of assembly and trafficking of native P2X4 and P2X7 receptor complexes in rodent immune cells". J. Biol. Chem. 284 (20): 13446–54. doi:10.1074/jbc.M901255200. PMC 2679444. PMID 19304656.
  20. Jindrichova M, Kuzyk P, Li S, Stojilkovic SS, Zemkova H (June 2012). "Conserved ectodomain cysteines are essential for rat P2X7 receptor trafficking". Purinergic Signal. 8 (2): 317–25. doi:10.1007/s11302-012-9291-x. PMC 3350585. PMID 22286664.
  21. Kobayashi K, Takahashi E, Miyagawa Y, Yamanaka H, Noguchi K (October 2011). "Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model". Neurosci. Lett. 504 (1): 57–61. doi:10.1016/j.neulet.2011.08.058. PMID 21924325.
  22. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (December 2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell Melanoma Res. 21 (6): 665–76. doi:10.1111/j.1755-148X.2008.00505.x. PMID 19067971.
  23. Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (September 2008). "P2X7 receptor-Pannexin1 complex: pharmacology and signaling". Am. J. Physiol., Cell Physiol. 295 (3): C752–60. doi:10.1152/ajpcell.00228.2008. PMC 2544446. PMID 18596211.
  24. Boison D, Chen JF, Fredholm BB (July 2010). "Adenosine signaling and function in glial cells". Cell Death Differ. 17 (7): 1071–82. doi:10.1038/cdd.2009.131. PMC 2885470. PMID 19763139.
  25. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (December 2006). "A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat". J. Pharmacol. Exp. Ther. 319 (3): 1376–85. doi:10.1124/jpet.106.111559. PMID 16982702.
  26. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (April 2005). "Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain". Pain. 114 (3): 386–96. doi:10.1016/j.pain.2005.01.002. PMID 15777864.
  27. Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M (January 2010). "P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide". J. Neurosci. 30 (2): 573–82. doi:10.1523/JNEUROSCI.3295-09.2010. PMC 2880485. PMID 20071520.
  28. Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K (September 2001). "Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5". J. Neurochem. 78 (6): 1339–49. doi:10.1046/j.1471-4159.2001.00514.x. PMID 11579142.
  29. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (September 2000). "Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia". J. Neurochem. 75 (3): 965–72. doi:10.1046/j.1471-4159.2000.0750965.x. PMID 10936177.
  30. Shiratori M, Tozaki-Saitoh H, Yoshitake M, Tsuda M, Inoue K (August 2010). "P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways". J. Neurochem. 114 (3): 810–9. doi:10.1111/j.1471-4159.2010.06809.x. PMID 20477948.
  31. Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Inoue K (January 2009). "Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT". J. Neurochem. 108 (1): 115–25. doi:10.1111/j.1471-4159.2008.05744.x. PMID 19014371.
  32. Gartland A, Skarratt KK, Hocking LJ, Parsons C, Stokes L, Jørgensen NR, Fraser WD, Reid DM, Gallagher JA, Wiley JS (May 2012). "Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women". Eur. J. Hum. Genet. 20 (5): 559–64. doi:10.1038/ejhg.2011.245. PMC 3330223. PMID 22234152.
  33. "Silencing immune attacks in type 1 diabetes". June 10, 2013. Retrieved June 15, 2013.
  34. "Boston Children's Hospital Finds Root Cause of Diabetes". June 13, 2013. Retrieved June 15, 2013.
  35. Huang C1 (Jan 2014). "P2X7 blockade attenuates mouse liver fibrosis". J Mol Med Rep. 9 (1): 57–62. doi:10.3892/mmr.2013.1807. PMID 24247209.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.