Dopamine receptor D2: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
No edit summary
Line 1: Line 1:
{{Wrongtitle|title=Dopamine receptor D<sub>2</sub>}}
{{DISPLAYTITLE:Dopamine receptor D<sub>2</sub>}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Dopamine receptor D<sub>2</sub>''', also known as '''D2R''', is a [[protein]] that, in humans, is encoded by the ''DRD2'' [[gene]]. After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups (including those of Solomon Snyder and Philip Seeman) used a radiolabeled antipsychotic drug to identify what is now known as the [[dopamine]] D<sub>2</sub> receptor.<ref>{{cite journal | vauthors = Madras BK | title = History of the discovery of the antipsychotic dopamine D2 receptor: a basis for the dopamine hypothesis of schizophrenia | journal = Journal of the History of the Neurosciences | volume = 22 | issue = 1 | pages = 62–78 | date = 2013 | pmid = 23323533 | doi = 10.1080/0964704X.2012.678199 }}</ref> The dopamine D<sub>2</sub> receptor is the main [[receptor (biochemistry)|receptor]] for all [[antipsychotic|antipsychotic drugs]].
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = no
| update_citations = yes
}}<!-- The GNF_Protein_box is automatically maintained by Protein Box BotSee Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Dopamine receptor D2
| HGNCid = 3023
| Symbol = DRD2
| AltSymbols =; D2DR; D2R
| OMIM = 126450
| ECnumber =
| Homologene = 22561
| MGIid = 94924
| GeneAtlas_image1 = PBB_GE_DRD2_216924_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_DRD2_206590_x_at_tn.png
| GeneAtlas_image3 = PBB_GE_DRD2_211624_s_at_tn.png
| Function = {{GNF_GO|id=GO:0001584 |text = rhodopsin-like receptor activity}} {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0004952 |text = dopamine receptor activity}}
| Component = {{GNF_GO|id=GO:0005882 |text = intermediate filament}} {{GNF_GO|id=GO:0005886 |text = plasma membrane}} {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007186 |text = G-protein coupled receptor protein signaling pathway}} {{GNF_GO|id=GO:0007195 |text = dopamine receptor, adenylate cyclase inhibiting pathway}} {{GNF_GO|id=GO:0007268 |text = synaptic transmission}} {{GNF_GO|id=GO:0007399 |text = nervous system development}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 1813
    | Hs_Ensembl = ENSG00000149295
    | Hs_RefseqProtein = NP_000786
    | Hs_RefseqmRNA = NM_000795
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 11
    | Hs_GenLoc_start = 112785528
    | Hs_GenLoc_end = 112851103
    | Hs_Uniprot = P14416
    | Mm_EntrezGene = 13489
    | Mm_Ensembl = ENSMUSG00000032259
    | Mm_RefseqmRNA = NM_010077
    | Mm_RefseqProtein = NP_034207
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 9
    | Mm_GenLoc_start = 49092857
    | Mm_GenLoc_end = 49160407
    | Mm_Uniprot = Q0VGH9
  }}
}}
'''Dopamine receptor D<sub>2</sub>''', also known as '''DRD2''', is a human [[gene]].


This gene encodes the D<sub>2</sub> subtype of the dopamine receptor. This [[G-protein coupled receptor]] inhibits [[adenylyl cyclase]] activity. A missense mutation in this gene causes myoclonus dystonia; other mutations have been associated with [[schizophrenia]].<ref name="SZGene">[http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneid=93 Gene Overview of All Published Schizophrenia-Association Studies for DRD2] - Schizophrenia Research Forum SZGene database.</ref> Alternative splicing of this gene results in two transcript variants encoding different isoforms. A third variant has been described, but it has not been determined whether this form is normal or due to aberrant splicing.<ref name="entrez">{{cite web | title = Entrez Gene: DRD2 dopamine receptor D2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1813| accessdate = }}</ref>
== Function ==
This gene encodes the D<sub>2</sub> subtype of the [[dopamine receptor]], which is coupled to G<sub>i</sub> subtype of [[G protein-coupled receptor]]. This [[G protein-coupled receptor]] inhibits [[adenylyl cyclase]] activity.<ref name="pmid11089973">{{cite journal | vauthors = Usiello A, Baik JH, Rougé-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E | title = Distinct functions of the two isoforms of dopamine D2 receptors | journal = Nature | volume = 408 | issue = 6809 | pages = 199–203 | date = Nov 2000 | pmid = 11089973 | doi = 10.1038/35041572 }}</ref>
 
In mice, regulation of D2R surface expression by the [[neuronal calcium sensor-1]] (NCS-1) in the [[dentate gyrus]] is involved in exploration, [[synaptic plasticity]] and memory formation.<ref name="pmid19755107">{{cite journal | vauthors = Saab BJ, Georgiou J, Nath A, Lee FJ, Wang M, Michalon A, Liu F, Mansuy IM, Roder JC | title = NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory | journal = Neuron | volume = 63 | issue = 5 | pages = 643–56 | date = Sep 2009 | pmid = 19755107 | doi = 10.1016/j.neuron.2009.08.014 }}</ref> A recent study has shown a potential role for D2R in retrieval of fear memories in the prelimbic cortex.<ref>{{Cite journal|last=Madsen|first=Heather B.|last2=Guerin|first2=Alexandre A.|last3=Kim|first3=Jee Hyun|title=Investigating the role of dopamine receptor- and parvalbumin-expressing cells in extinction of conditioned fear|url=https://doi.org/10.1016/j.nlm.2017.08.009|journal=Neurobiology of Learning and Memory|volume=145|pages=7–17|doi=10.1016/j.nlm.2017.08.009}}</ref>
 
In flies, activation of the D<sub>2</sub> [[autoreceptor]] protected dopamine neurons from cell death induced by [[MPP+]], a toxin mimicking [[Parkinson's disease]] pathology.<ref name="pmid23452092">{{cite journal | vauthors = Wiemerslage L, Schultz BJ, Ganguly A, Lee D | title = Selective degeneration of dopaminergic neurons by MPP(+) and its rescue by D2 autoreceptors in Drosophila primary culture | journal = Journal of Neurochemistry | volume = 126 | issue = 4 | pages = 529–40 | date = Aug 2013 | pmid = 23452092 | doi = 10.1111/jnc.12228 | pmc=3737274}}</ref>
 
== Isoforms{{anchor|D2sh}} ==
 
[[Alternative splicing]] of this gene results in three transcript variants encoding different [[isoform]]s.<ref name="entrez">{{cite web | title = Entrez Gene: DRD2 dopamine receptor D2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1813| accessdate = }}</ref>
 
The long form ('''D2Lh''') has the "canonical" sequence and functions as a classic post-[[Synapse|synaptic]] receptor.<ref name="D2 Long and short">{{cite journal | vauthors = Beaulieu JM, Gainetdinov RR | title = The physiology, signaling, and pharmacology of dopamine receptors | journal = Pharmacological Reviews | volume = 63 | issue = 1 | pages = 182–217 | date = Mar 2011 | pmid = 21303898 | doi = 10.1124/pr.110.002642 }}</ref>  The short form ('''D2Sh''') is pre-synaptic and functions as an [[autoreceptor]] that regulates the levels of dopamine in the synaptic cleft.<ref name="D2 Long and short" /> [[agonist|Agonism]] of D2sh receptors inhibits dopamine release; antagonism increases [[dopaminergic]] release.<ref name="D2 Long and short" /> A third D2(Longer) form differs from the canonical sequence where 270V is replaced by VVQ.<ref name = "uniprot">{{UniProt Full|P14416|D(2) dopamine receptor}}</ref>
 
== Genetics ==
[[Allele|Allelic]] variants:
* [[A-241G]]
* [[C132T]], [[G423A]], [[T765C]], [[C939T]], [[C957T]], and [[G1101A]]<ref name="pmid12554675">{{cite journal | vauthors = Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV | title = Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor | journal = Human Molecular Genetics | volume = 12 | issue = 3 | pages = 205–16 | date = Feb 2003 | pmid = 12554675 | doi = 10.1093/hmg/ddg055 }}</ref>
* [[Cys311Ser]]
* -141C insertion/deletion<ref name="pmid9097961">{{cite journal | vauthors = Arinami T, Gao M, Hamaguchi H, Toru M | title = A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia | journal = Human Molecular Genetics | volume = 6 | issue = 4 | pages = 577–82 | date = Apr 1997 | pmid = 9097961 | doi = 10.1093/hmg/6.4.577 }}</ref> The polymorphisms have been investigated with respect to association with [[schizophrenia]].<ref name="pmid15211624">{{cite journal | vauthors = Glatt SJ, Faraone SV, Tsuang MT | title = DRD2 -141C insertion/deletion polymorphism is not associated with schizophrenia: results of a meta-analysis | journal = American Journal of Medical Genetics Part B | volume = 128B | issue = 1 | pages = 21–3 | date = Jul 2004 | pmid = 15211624 | doi = 10.1002/ajmg.b.30007 }}</ref>
 
Some researchers have previously associated the [[Polymorphism (biology)|polymorphism]] Taq 1A ([[rs1800497]]) to the ''DRD2'' gene.
However, the polymorphism resides in [[exon]] 8 of the ''[[ANKK1]]'' gene.<ref name="pmid18621654">{{cite journal | vauthors = Lucht M, Rosskopf D | title = Comment on "Genetically determined differences in learning from errors" | journal = Science | volume = 321 | issue = 5886 | pages = 200; author reply 200 | date = Jul 2008 | pmid = 18621654 | doi = 10.1126/science.1155372 }}</ref> DRD2 TaqIA polymorphism has been reported to be associated with an increased risk for developing motor
fluctuations but not hallucinations in Parkinson's disease.<ref name="pmid11425949">{{cite journal | vauthors = Wang J, Liu ZL, Chen B | title = Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD | journal = Neurology | volume = 56 | issue = 12 | pages = 1757–9 | date = Jun 2001 | pmid = 11425949 | doi = 10.1212/WNL.56.12.1757 }}</ref><ref name="Wang J, Zhao c, Chen B, Liu Z. 2004">{{cite journal | vauthors = Wang J, Zhao C, Chen B, Liu ZL | title = Polymorphisms of dopamine receptor and transporter genes and hallucinations in Parkinson's disease | journal = Neuroscience Letters | volume = 355 | issue = 3 | pages = 193–6 | date = Jan 2004 | pmid = 14732464 | doi = 10.1016/j.neulet.2003.11.006 }}</ref>
 
== Ligands ==
Most of the older [[antipsychotic]] drugs such as [[chlorpromazine]] and [[haloperidol]] are antagonists for the dopamine D<sub>2</sub> receptor, but are, in general, very unselective, at best selective only for the "D<sub>2</sub>-like family" receptors and so binding to D<sub>2</sub>, D<sub>3</sub> and D<sub>4</sub>, and often also to many other receptors such as those for [[serotonin]] and [[histamine]], resulting in a range of side-effects and making them poor agents for scientific research. In similar manner, older dopamine agonists used for [[Parkinson's disease]] such as [[bromocriptine]] and [[cabergoline]] are poorly selective for one dopamine receptor over another, and, although most of these agents do act as D<sub>2</sub> agonists, they affect other subtypes as well. Several selective D<sub>2</sub> [[ligand (biochemistry)|ligands]] are, however, now available, and this number is likely to increase as further research progresses.
 
===Agonists===
{{div col|colwidth=33em}}
* [[Bromocriptine]] – full agonist
* [[Cabergoline]] (Caberl)
* [[N,N-Propyldihydrexidine]] – analogue of the D<sub>1</sub>/D<sub>5</sub> agonist [[dihydrexidine]]; Selective for postsynaptic D<sub>2</sub> receptor over the presynaptic D<sub>2</sub> [[autoreceptor]].
* [[Piribedil]] – also D<sub>3</sub> receptor agonist and [[α2-adrenergic receptor|α<sub>2</sub>–adrenergic antagonist]]
* [[Pramipexole]] – also D<sub>3</sub>, D<sub>4</sub> receptor agonist
* [[Quinelorane]] – affinity for D<sub>2</sub> > D<sub>3</sub>
* [[Quinpirole]] – also D<sub>3</sub> receptor agonist
* [[Ropinirole]] – full agonist
* [[Sumanirole]] – full agonist; highly selective
* [[Lysergic acid diethylamide]] - full agonist
* [[Talipexole]] – selective for D<sub>2</sub> over other dopamine receptors, but also acts as α<sub>2</sub>–adrenoceptor agonist and 5-HT<sub>3</sub> antagonist.
{{Div col end}}
 
===Partial agonists===
{{div col|colwidth=33em}}
* [[Aplindore]]
* [[Aripiprazole]]<ref name="Rxlist - Abilify">{{cite web | url = http://www.rxlist.com/abilify-drug.htm | title = Clinical Pharmacology for Abilify | author = | authorlink = | date = 2010-01-21 | work =  | publisher = RxList.com | pages = | archiveurl = | archivedate = | quote = | accessdate = 2010-01-21}}</ref>
* [[Armodafinil]] – although primarily thought to be a weak DAT inhibitor, armodafinil is also a D<sub>2</sub> partial agonist.<ref name="pmid19391150">{{cite journal | vauthors = Seeman P, Guan HC, Hirbec H | title = Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil | journal = Synapse | volume = 63 | issue = 8 | pages = 698–704 | date = August 2009 | pmid = 19391150 | doi = 10.1002/syn.20647 }}</ref>
* [[Brexpiprazole]]
* [[Cariprazine]]
* [[GSK-789,472]] – Also D<sub>3</sub> antagonist, with good selectivity over other receptors <ref name="pmid20153647">{{cite journal | vauthors = Holmes IP, Blunt RJ, Lorthioir OE, Blowers SM, Gribble A, Payne AH, Stansfield IG, Wood M, Woollard PM, Reavill C, Howes CM, Micheli F, Di Fabio R, Donati D, Terreni S, Hamprecht D, Arista L, Worby A, Watson SP | title = The identification of a selective dopamine D2 partial agonist, D3 antagonist displaying high levels of brain exposure | journal = Bioorganic & Medicinal Chemistry Letters | volume = 20 | issue = 6 | pages = 2013–6 | date = Mar 2010 | pmid = 20153647 | doi = 10.1016/j.bmcl.2010.01.090 }}</ref>
* [[Ketamine]] (also NMDA antagonist)
*[[2-Phenethylamine]] – (also a TAAR1 agonist and GABAb antagonist with effects at AMPA receptors)
* [[LSD]] – in vitro, LSD was found to be a partial agonist and potentiates dopamine-mediated prolactin secretion in lactotrophs.<ref name="pmid9698051">{{cite journal | vauthors = Giacomelli S, Palmery M, Romanelli L, Cheng CY, Silvestrini B | title = Lysergic acid diethylamide (LSD) is a partial agonist of D2 dopaminergic receptors and it potentiates dopamine-mediated prolactin secretion in lactotrophs in vitro | journal = Life Sciences | volume = 63 | issue = 3 | pages = 215–22 | year = 1998 | pmid = 9698051 | doi = 10.1016/S0024-3205(98)00262-8 }}</ref> LSD is also a 5-HT<sub>2A</sub> agonist.
* [[OSU-6162]] – also 5-HT<sub>2A</sub> partial agonist, acts as "dopamine stabilizer"
* [[Roxindole]] (only at the D<sub>2</sub> autoreceptors)
* [[RP5063]]
* [[Salvinorin A]] – also [[Κ-opioid receptor|κ-opioid agonist]].
{{Div col end}}
 
===Antagonists===
{{div col|colwidth=33em}}
* [[Atypical antipsychotics]] (except aripiprazole, brexpiprazole, and any other D<sub>2</sub> receptor partial agonists)
* [[Cinnarizine]]
* [[Chloroethylnorapomorphine]]
* [[Desmethoxyfallypride]]
* [[Domperidone]] – D<sub>2</sub> and D<sub>3</sub> antagonist; does not cross the blood-brain barrier
* [[Eticlopride]]
* [[Fallypride]]
* [[Hydroxyzine]] (Vistaril, Atarax)
* [[Itopride]]
* [[L-741,626]]  – highly selective D<sub>2</sub> antagonist
* C<sup>11</sup> [[Raclopride]] radiolabled – commonly employed in [[positron emission tomography]] studies<ref name="pmid15256343">{{cite journal | vauthors = Wang GJ, Volkow ND, Thanos PK, Fowler JS | title = Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review | journal = Journal of Addictive Diseases | volume = 23 | issue = 3 | pages = 39–53 | year = 2004 | pmid = 15256343 | doi = 10.1300/J069v23n03_04 }}</ref>
* [[Typical antipsychotics]]
* SV 293<ref>{{cite journal | vauthors = Huang R, Griffin SA, Taylor M, Vangveravong S, Mach RH, Dillon GH, Luedtke RR | title = The effect of SV 293, a D2 dopamine receptor-selective antagonist, on D2 receptor-mediated GIRK channel activation and adenylyl cyclase inhibition | journal = Pharmacology | volume = 92 | issue = 1–2 | pages = 84–9 | year = 2013 | pmid = 23942137 | doi = 10.1159/000351971 }}</ref>
*[[Yohimbine]]
 
;[[#Isoforms|D<sub>2</sub>sh]] selective (presynaptic autoreceptors)
* [[Amisulpride]] (low doses)
* [[UH-232]]
{{Div col end}}
 
===Allosteric modulators===
{{div col|colwidth=33em}}
* [[Homocysteine]] – negative [[allosteric modulator]]<ref>{{cite journal | vauthors = Agnati LF, Ferré S, Genedani S, Leo G, Guidolin D, Filaferro M, Carriba P, Casadó V, Lluis C, Franco R, Woods AS, Fuxe K | title = Allosteric modulation of dopamine D2 receptors by homocysteine | journal = Journal of Proteome Research | volume = 5 | issue = 11 | pages = 3077–83 | date = Nov 2006 | pmid = 17081059 | doi = 10.1021/pr0601382 }}</ref>
* [[PAOPA]]<ref>{{cite journal | vauthors = Beyaert MG, Daya RP, Dyck BA, Johnson RL, Mishra RK | title = PAOPA, a potent dopamine D2 receptor allosteric modulator, prevents and reverses behavioral and biochemical abnormalities in an amphetamine–sensitized preclinical animal model of schizophrenia | journal = European Neuropsychopharmacology | volume = 23 | issue = 3 | pages = 253–62 | date = Mar 2013 | pmid = 22658400 | doi = 10.1016/j.euroneuro.2012.04.010 }}</ref>
* SB-269,652 <ref name="pmid25108820">{{cite journal | vauthors = Lane JR, Donthamsetti P, Shonberg J, Draper-Joyce CJ, Dentry S, Michino M, Shi L, López L, Scammells PJ, Capuano B, Sexton PM, Javitch JA, Christopoulos A | title = A new mechanism of allostery in a G protein–coupled receptor dimer | journal = Nature Chemical Biology | volume = 10 | issue = 9 | pages = 745–52 | date = Sep 2014 | pmid = 25108820 | doi = 10.1038/nchembio.1593 | pmc=4138267}}</ref><ref name="pmid25453482">{{cite journal | vauthors = Maggio R, Scarselli M, Capannolo M, Millan MJ | title = Novel dimensions of D3 receptor function: Focus on heterodimerisation, transactivation and allosteric modulation | journal = European Neuropsychopharmacology | volume = 25 | issue = 9 | pages = 1470–9 | date = Sep 2015 | pmid = 25453482 | doi = 10.1016/j.euroneuro.2014.09.016 }}</ref><ref>{{cite journal | vauthors = Silvano E, Millan MJ, Mannoury la Cour C, Han Y, Duan L, Griffin SA, Luedtke RR, Aloisi G, Rossi M, Zazzeroni F, Javitch JA, Maggio R | title = The tetrahydroisoquinoline derivative SB269,652 is an allosteric antagonist at dopamine D3 and D2 receptors | journal = Molecular Pharmacology | volume = 78 | issue = 5 | pages = 925–34 | date = Nov 2010 | pmid = 20702763 | pmc = 2981362 | doi = 10.1124/mol.110.065755 }}</ref>
{{Div col end}}
 
=== Heterobivalent ligands ===
* 1-(6-(((''R'',''S'')-7-Hydroxychroman-2-yl)methylamino]hexyl)-3-((''S'')-1-methylpyrrolidin-2-yl)pyridinium bromide (compound 2, D2R agonist and [[Nicotinic acetylcholine receptor|nAChR]] antagonist)<ref>{{Cite journal|last=Matera|first=Carlo|last2=Pucci|first2=Luca|last3=Fiorentini|first3=Chiara|last4=Fucile|first4=Sergio|last5=Missale|first5=Cristina|last6=Grazioso|first6=Giovanni|last7=Clementi|first7=Francesco|last8=Zoli|first8=Michele|last9=De Amici|first9=Marco|date=2015-08-28|title=Bifunctional compounds targeting both D2 and non-α7 nACh receptors: Design, synthesis and pharmacological characterization|url=http://www.sciencedirect.com/science/article/pii/S0223523415301148|journal=European Journal of Medicinal Chemistry|volume=101|pages=367–383|doi=10.1016/j.ejmech.2015.06.039}}</ref>
 
=== Functionally selective ligands ===
* UNC9994<ref>{{cite journal | vauthors = Allen JA, Yost JM, Setola V, Chen X, Sassano MF, Chen M, Peterson S, Yadav PN, Huang XP, Feng B, Jensen NH, Che X, Bai X, Frye SV, Wetsel WC, Caron MG, Javitch JA, Roth BL, Jin J | title = Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 108 | issue = 45 | pages = 18488–93 | date = November 2011 | pmid = 22025698 | pmc = 3215024 | doi = 10.1073/pnas.1104807108 }}</ref>
 
==Protein–protein interactions==
The dopamine receptor D<sub>2</sub> has been shown to [[Protein–protein interaction|interact]] with [[EPB41L1]],<ref name="pmid12181426">{{cite journal | vauthors = Binda AV, Kabbani N, Lin R, Levenson R | title = D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N | journal = Molecular Pharmacology | volume = 62 | issue = 3 | pages = 507–13 | date = Sep 2002 | pmid = 12181426 | doi = 10.1124/mol.62.3.507 }}</ref> [[PPP1R9B]]<ref name="pmid10391935">{{cite journal | vauthors = Smith FD, Oxford GS, Milgram SL | title = Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein | journal = The Journal of Biological Chemistry | volume = 274 | issue = 28 | pages = 19894–900 | date = Jul 1999 | pmid = 10391935 | doi = 10.1074/jbc.274.28.19894 }}</ref> and [[NCS-1]].<ref name="pmid12351722">{{cite journal | vauthors = Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R | title = Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor | journal = The Journal of Neuroscience | volume = 22 | issue = 19 | pages = 8476–86 | date = Oct 2002 | pmid = 12351722 }}</ref>
 
===Receptor oligomers===
The D<sub>2</sub> receptor forms [[GPCR oligomer|receptor heterodimers]] ''[[in vivo]]'' (i.e., in living animals) with other [[G protein-coupled receptors]]; these include:<ref name="DA receptor heterodimers">{{cite journal | vauthors = Beaulieu JM, Espinoza S, Gainetdinov RR | title = Dopamine receptors - IUPHAR Review 13 | journal = British Journal of Pharmacology | volume = 172 | issue = 1 | pages = 1–23 | date = Jan 2015 | pmid = 25671228 | doi = 10.1111/bph.12906 | pmc=4280963}}</ref>
*[[D1–D2 dopamine receptor heteromer|D<sub>1</sub>–D<sub>2</sub> dopamine receptor heteromer]]
*D<sub>2</sub>–[[Adenosine A2A receptor|adenosine A<sub>2A</sub>]]
*D<sub>2</sub>–[[ghrelin receptor]]
*[[#D2sh|D<sub>2sh</sub>]]–[[TAAR1]]{{#tag:ref|D2sh–TAAR1 is a presynaptic [[heterodimer]] which involves the relocation of TAAR1 from the intracellular space to D2sh at the [[plasma membrane]], increased D2sh agonist [[binding affinity]], and [[signal transduction]] through the calcium–[[protein kinase C|PKC]]–[[NFAT]] pathway and [[G-protein]] independent [[Protein kinase B|PKB]]–[[GSK3]] pathway.<ref name="Miller+Grandy 2016">{{cite journal | vauthors = Grandy DK, Miller GM, Li JX | title = "TAARgeting Addiction"-The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference | journal = Drug Alcohol Depend. | volume = 159 | issue = | pages = 9–16 | date = February 2016 | pmid = 26644139 | doi = 10.1016/j.drugalcdep.2015.11.014 | quote = This original observation of TAAR1 and DA D2R interaction has subsequently been confirmed and expanded upon with observations that both receptors can heterodimerize with each other under certain conditions&nbsp;... Additional DA D2R/TAAR1 interactions with functional consequences are revealed by the results of experiments demonstrating that in addition to the cAMP/PKA pathway (Panas et al., 2012) stimulation of TAAR1-mediated signaling is linked to activation of the Ca++/PKC/NFAT pathway (Panas et al.,2012) and the DA D2R-coupled, G protein-independent AKT/GSK3 signaling pathway (Espinoza et al., 2015; Harmeier et al., 2015), such that concurrent TAAR1 and DA DR2R activation could result in diminished signaling in one pathway (e.g. cAMP/PKA) but retention of signaling through another (e.g., Ca++/PKC/NFA)}}</ref><ref name="TAAR1-D2sh">{{cite journal | vauthors = Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A, Bettler B, Hoener MC | title = Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers | journal = Eur Neuropsychopharmacol | volume = 25 | issue = 11 | pages = 2049–61 | year = 2015 | pmid = 26372541 | doi = 10.1016/j.euroneuro.2015.08.011 | quote =  Interaction of TAAR1 with D2R altered the subcellular localization of TAAR1 and increased D2R agonist binding affinity.}}</ref>|group="note"}}
 
The D<sub>2</sub> receptor has been shown to form hetorodimers ''[[in vitro]]'' (and possibly ''in vivo'') with [[Dopamine D3 receptor|DRD<sub>3</sub>]],<ref>{{cite journal | vauthors = Maggio R, Millan MJ | title = Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance | journal = Current Opinion in Pharmacology | volume = 10 | issue = 1 | pages = 100–7 | date = Feb 2010 | pmid = 19896900 | doi = 10.1016/j.coph.2009.10.001 }}</ref> [[Dopamine receptor D5|DRD<sub>5</sub>]],<ref>{{cite journal | vauthors = Hasbi A, O'Dowd BF, George SR | title = Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms | journal = Current Opinion in Pharmacology | volume = 10 | issue = 1 | pages = 93–9 | date = Feb 2010 | pmid = 19897420 | pmc = 2818238 | doi = 10.1016/j.coph.2009.09.011 }}</ref> and [[5-HT2A receptor|5-HT<sub>2A</sub>]].<ref>{{cite journal | vauthors = Albizu L, Holloway T, González-Maeso J, Sealfon SC | title = Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors | journal = Neuropharmacology | volume = 61 | issue = 4 | pages = 770–7 | date = Sep 2011 | pmid = 21645528 | pmc = 3556730 | doi = 10.1016/j.neuropharm.2011.05.023 }}</ref>


==See also==
==See also==
* [[Dopamine receptor]]
* [[Prolactin modulator]]


==References==
==Notes==
{{reflist|2}}
{{Reflist|group=note}}


==Further reading==
== References ==
{{refbegin | 2}}
{{Reflist|2}}
{{PBB_Further_reading
| citations =
*{{cite journal  | author=Missale C, Nash SR, Robinson SW, ''et al.'' |title=Dopamine receptors: from structure to function. |journal=Physiol. Rev. |volume=78 |issue= 1 |pages= 189-225 |year= 1998 |pmid= 9457173 |doi=  }}
*{{cite journal  | author=Sidhu A, Niznik HB |title=Coupling of dopamine receptor subtypes to multiple and diverse G proteins. |journal=Int. J. Dev. Neurosci. |volume=18 |issue= 7 |pages= 669-77 |year= 2000 |pmid= 10978845 |doi=  }}
*{{cite journal  | author=Araki K, Kuwano R, Morii K, ''et al.'' |title=Structure and expression of human and rat D2 dopamine receptor genes. |journal=Neurochem. Int. |volume=21 |issue= 1 |pages= 91-8 |year= 1993 |pmid= 1363862 |doi=  }}
*{{cite journal  | author=Eubanks JH, Djabali M, Selleri L, ''et al.'' |title=Structure and linkage of the D2 dopamine receptor and neural cell adhesion molecule genes on human chromosome 11q23. |journal=Genomics |volume=14 |issue= 4 |pages= 1010-8 |year= 1993 |pmid= 1478642 |doi=  }}
*{{cite journal  | author=Dearry A, Falardeau P, Shores C, Caron MG |title=D2 dopamine receptors in the human retina: cloning of cDNA and localization of mRNA. |journal=Cell. Mol. Neurobiol. |volume=11 |issue= 5 |pages= 437-53 |year= 1992 |pmid= 1835903 |doi=  }}
*{{cite journal  | author=Sarkar G, Kapelner S, Grandy DK, ''et al.'' |title=Direct sequencing of the dopamine D2 receptor (DRD2) in schizophrenics reveals three polymorphisms but no structural change in the receptor. |journal=Genomics |volume=11 |issue= 1 |pages= 8-14 |year= 1992 |pmid= 1837284 |doi=  }}
*{{cite journal  | author=Stormann TM, Gdula DC, Weiner DM, Brann MR |title=Molecular cloning and expression of a dopamine D2 receptor from human retina. |journal=Mol. Pharmacol. |volume=37 |issue= 1 |pages= 1-6 |year= 1990 |pmid= 2137193 |doi=  }}
*{{cite journal  | author=Robakis NK, Mohamadi M, Fu DY, ''et al.'' |title=Human retina D2 receptor cDNAs have multiple polyadenylation sites and differ from a pituitary clone at the 5' non-coding region. |journal=Nucleic Acids Res. |volume=18 |issue= 5 |pages= 1299 |year= 1990 |pmid= 2138729 |doi=  }}
*{{cite journal  | author=Selbie LA, Hayes G, Shine J |title=DNA homology screening: isolation and characterization of the human D2A dopamine receptor subtype. |journal=Adv. Second Messenger Phosphoprotein Res. |volume=24 |issue=  |pages= 9-14 |year= 1990 |pmid= 2144985 |doi=  }}
*{{cite journal  | author=Monsma FJ, McVittie LD, Gerfen CR, ''et al.'' |title=Multiple D2 dopamine receptors produced by alternative RNA splicing. |journal=Nature |volume=342 |issue= 6252 |pages= 926-9 |year= 1990 |pmid= 2480527 |doi= 10.1038/342926a0 }}
*{{cite journal  | author=Dal Toso R, Sommer B, Ewert M, ''et al.'' |title=The dopamine D2 receptor: two molecular forms generated by alternative splicing. |journal=EMBO J. |volume=8 |issue= 13 |pages= 4025-34 |year= 1990 |pmid= 2531656 |doi=  }}
*{{cite journal  | author=Grandy DK, Marchionni MA, Makam H, ''et al.'' |title=Cloning of the cDNA and gene for a human D2 dopamine receptor. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=86 |issue= 24 |pages= 9762-6 |year= 1990 |pmid= 2532362 |doi=  }}
*{{cite journal  | author=Selbie LA, Hayes G, Shine J |title=The major dopamine D2 receptor: molecular analysis of the human D2A subtype. |journal=DNA |volume=8 |issue= 9 |pages= 683-9 |year= 1990 |pmid= 2533064 |doi=  }}
*{{cite journal  | author=Leysen JE, Gommeren W, Mertens J, ''et al.'' |title=Comparison of in vitro binding properties of a series of dopamine antagonists and agonists for cloned human dopamine D2S and D2L receptors and for D2 receptors in rat striatal and mesolimbic tissues, using [125I] 2'-iodospiperone. |journal=Psychopharmacology (Berl.) |volume=110 |issue= 1-2 |pages= 27-36 |year= 1995 |pmid= 7870895 |doi=  }}
*{{cite journal  | author=Itokawa M, Arinami T, Futamura N, ''et al.'' |title=A structural polymorphism of human dopamine D2 receptor, D2(Ser311-->Cys). |journal=Biochem. Biophys. Res. Commun. |volume=196 |issue= 3 |pages= 1369-75 |year= 1994 |pmid= 7902708 |doi= 10.1006/bbrc.1993.2404 }}
*{{cite journal  | author=Malmberg A, Jackson DM, Eriksson A, Mohell N |title=Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3 receptors. |journal=Mol. Pharmacol. |volume=43 |issue= 5 |pages= 749-54 |year= 1993 |pmid= 8099194 |doi=  }}
*{{cite journal  | author=Seeman P, Ohara K, Ulpian C, ''et al.'' |title=Schizophrenia: normal sequence in the dopamine D2 receptor region that couples to G-proteins. DNA polymorphisms in D2. |journal=Neuropsychopharmacology |volume=8 |issue= 2 |pages= 137-42 |year= 1993 |pmid= 8471125 |doi=  }}
*{{cite journal  | author=Cravchik A, Sibley DR, Gejman PV |title=Functional analysis of the human D2 dopamine receptor missense variants. |journal=J. Biol. Chem. |volume=271 |issue= 42 |pages= 26013-7 |year= 1996 |pmid= 8824240 |doi=  }}
*{{cite journal  | author=Ho MK, Wong YH |title=Functional role of amino-terminal serine16 and serine27 of G alphaZ in receptor and effector coupling. |journal=J. Neurochem. |volume=68 |issue= 6 |pages= 2514-22 |year= 1997 |pmid= 9166747 |doi=  }}
}}
{{refend}}


== External links ==
== External links ==
* {{MeshName|Receptors,+Dopamine+D2}}
* {{MeshName|Receptors,+Dopamine+D2}}
* {{cite web|last=Pappas|first=Stephanie|title=Study: Genes Influence Who Your Friends Are|url=http://www.livescience.com/health/genes-influence-friendships-110117.html|work=Imaginova Corp.|publisher=LiveScience|accessdate=20 January 2011}}


{{membrane-protein-stub}}
{{NLM content}}
{{NLM content}}
{{G protein-coupled receptors}}
{{G protein-coupled receptors}}
{{Dopaminergics}}
{{Use dmy dates|date=January 2012}}


[[Category:G protein coupled receptors]]
[[Category:Dopamine receptors]]
[[Category:Biology of attention deficit hyperactivity disorder]]
[[Category:Psychopharmacology]]

Revision as of 09:10, 9 November 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Dopamine receptor D2, also known as D2R, is a protein that, in humans, is encoded by the DRD2 gene. After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups (including those of Solomon Snyder and Philip Seeman) used a radiolabeled antipsychotic drug to identify what is now known as the dopamine D2 receptor.[1] The dopamine D2 receptor is the main receptor for all antipsychotic drugs.

Function

This gene encodes the D2 subtype of the dopamine receptor, which is coupled to Gi subtype of G protein-coupled receptor. This G protein-coupled receptor inhibits adenylyl cyclase activity.[2]

In mice, regulation of D2R surface expression by the neuronal calcium sensor-1 (NCS-1) in the dentate gyrus is involved in exploration, synaptic plasticity and memory formation.[3] A recent study has shown a potential role for D2R in retrieval of fear memories in the prelimbic cortex.[4]

In flies, activation of the D2 autoreceptor protected dopamine neurons from cell death induced by MPP+, a toxin mimicking Parkinson's disease pathology.[5]

Isoforms

Alternative splicing of this gene results in three transcript variants encoding different isoforms.[6]

The long form (D2Lh) has the "canonical" sequence and functions as a classic post-synaptic receptor.[7] The short form (D2Sh) is pre-synaptic and functions as an autoreceptor that regulates the levels of dopamine in the synaptic cleft.[7] Agonism of D2sh receptors inhibits dopamine release; antagonism increases dopaminergic release.[7] A third D2(Longer) form differs from the canonical sequence where 270V is replaced by VVQ.[8]

Genetics

Allelic variants:

Some researchers have previously associated the polymorphism Taq 1A (rs1800497) to the DRD2 gene. However, the polymorphism resides in exon 8 of the ANKK1 gene.[12] DRD2 TaqIA polymorphism has been reported to be associated with an increased risk for developing motor fluctuations but not hallucinations in Parkinson's disease.[13][14]

Ligands

Most of the older antipsychotic drugs such as chlorpromazine and haloperidol are antagonists for the dopamine D2 receptor, but are, in general, very unselective, at best selective only for the "D2-like family" receptors and so binding to D2, D3 and D4, and often also to many other receptors such as those for serotonin and histamine, resulting in a range of side-effects and making them poor agents for scientific research. In similar manner, older dopamine agonists used for Parkinson's disease such as bromocriptine and cabergoline are poorly selective for one dopamine receptor over another, and, although most of these agents do act as D2 agonists, they affect other subtypes as well. Several selective D2 ligands are, however, now available, and this number is likely to increase as further research progresses.

Agonists

Partial agonists

Antagonists

D2sh selective (presynaptic autoreceptors)

Allosteric modulators

Heterobivalent ligands

  • 1-(6-(((R,S)-7-Hydroxychroman-2-yl)methylamino]hexyl)-3-((S)-1-methylpyrrolidin-2-yl)pyridinium bromide (compound 2, D2R agonist and nAChR antagonist)[26]

Functionally selective ligands

Protein–protein interactions

The dopamine receptor D2 has been shown to interact with EPB41L1,[28] PPP1R9B[29] and NCS-1.[30]

Receptor oligomers

The D2 receptor forms receptor heterodimers in vivo (i.e., in living animals) with other G protein-coupled receptors; these include:[31]

The D2 receptor has been shown to form hetorodimers in vitro (and possibly in vivo) with DRD3,[34] DRD5,[35] and 5-HT2A.[36]

See also

Notes

  1. D2sh–TAAR1 is a presynaptic heterodimer which involves the relocation of TAAR1 from the intracellular space to D2sh at the plasma membrane, increased D2sh agonist binding affinity, and signal transduction through the calcium–PKCNFAT pathway and G-protein independent PKBGSK3 pathway.[32][33]

References

  1. Madras BK (2013). "History of the discovery of the antipsychotic dopamine D2 receptor: a basis for the dopamine hypothesis of schizophrenia". Journal of the History of the Neurosciences. 22 (1): 62–78. doi:10.1080/0964704X.2012.678199. PMID 23323533.
  2. Usiello A, Baik JH, Rougé-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (Nov 2000). "Distinct functions of the two isoforms of dopamine D2 receptors". Nature. 408 (6809): 199–203. doi:10.1038/35041572. PMID 11089973.
  3. Saab BJ, Georgiou J, Nath A, Lee FJ, Wang M, Michalon A, Liu F, Mansuy IM, Roder JC (Sep 2009). "NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory". Neuron. 63 (5): 643–56. doi:10.1016/j.neuron.2009.08.014. PMID 19755107.
  4. Madsen, Heather B.; Guerin, Alexandre A.; Kim, Jee Hyun. "Investigating the role of dopamine receptor- and parvalbumin-expressing cells in extinction of conditioned fear". Neurobiology of Learning and Memory. 145: 7–17. doi:10.1016/j.nlm.2017.08.009.
  5. Wiemerslage L, Schultz BJ, Ganguly A, Lee D (Aug 2013). "Selective degeneration of dopaminergic neurons by MPP(+) and its rescue by D2 autoreceptors in Drosophila primary culture". Journal of Neurochemistry. 126 (4): 529–40. doi:10.1111/jnc.12228. PMC 3737274. PMID 23452092.
  6. "Entrez Gene: DRD2 dopamine receptor D2".
  7. 7.0 7.1 7.2 Beaulieu JM, Gainetdinov RR (Mar 2011). "The physiology, signaling, and pharmacology of dopamine receptors". Pharmacological Reviews. 63 (1): 182–217. doi:10.1124/pr.110.002642. PMID 21303898.
  8. Universal protein resource accession number P14416 for "D(2) dopamine receptor" at UniProt.
  9. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV (Feb 2003). "Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor". Human Molecular Genetics. 12 (3): 205–16. doi:10.1093/hmg/ddg055. PMID 12554675.
  10. Arinami T, Gao M, Hamaguchi H, Toru M (Apr 1997). "A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia". Human Molecular Genetics. 6 (4): 577–82. doi:10.1093/hmg/6.4.577. PMID 9097961.
  11. Glatt SJ, Faraone SV, Tsuang MT (Jul 2004). "DRD2 -141C insertion/deletion polymorphism is not associated with schizophrenia: results of a meta-analysis". American Journal of Medical Genetics Part B. 128B (1): 21–3. doi:10.1002/ajmg.b.30007. PMID 15211624.
  12. Lucht M, Rosskopf D (Jul 2008). "Comment on "Genetically determined differences in learning from errors"". Science. 321 (5886): 200, author reply 200. doi:10.1126/science.1155372. PMID 18621654.
  13. Wang J, Liu ZL, Chen B (Jun 2001). "Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD". Neurology. 56 (12): 1757–9. doi:10.1212/WNL.56.12.1757. PMID 11425949.
  14. Wang J, Zhao C, Chen B, Liu ZL (Jan 2004). "Polymorphisms of dopamine receptor and transporter genes and hallucinations in Parkinson's disease". Neuroscience Letters. 355 (3): 193–6. doi:10.1016/j.neulet.2003.11.006. PMID 14732464.
  15. "Clinical Pharmacology for Abilify". RxList.com. 2010-01-21. Retrieved 2010-01-21.
  16. Seeman P, Guan HC, Hirbec H (August 2009). "Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil". Synapse. 63 (8): 698–704. doi:10.1002/syn.20647. PMID 19391150.
  17. Holmes IP, Blunt RJ, Lorthioir OE, Blowers SM, Gribble A, Payne AH, Stansfield IG, Wood M, Woollard PM, Reavill C, Howes CM, Micheli F, Di Fabio R, Donati D, Terreni S, Hamprecht D, Arista L, Worby A, Watson SP (Mar 2010). "The identification of a selective dopamine D2 partial agonist, D3 antagonist displaying high levels of brain exposure". Bioorganic & Medicinal Chemistry Letters. 20 (6): 2013–6. doi:10.1016/j.bmcl.2010.01.090. PMID 20153647.
  18. Giacomelli S, Palmery M, Romanelli L, Cheng CY, Silvestrini B (1998). "Lysergic acid diethylamide (LSD) is a partial agonist of D2 dopaminergic receptors and it potentiates dopamine-mediated prolactin secretion in lactotrophs in vitro". Life Sciences. 63 (3): 215–22. doi:10.1016/S0024-3205(98)00262-8. PMID 9698051.
  19. Wang GJ, Volkow ND, Thanos PK, Fowler JS (2004). "Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review". Journal of Addictive Diseases. 23 (3): 39–53. doi:10.1300/J069v23n03_04. PMID 15256343.
  20. Huang R, Griffin SA, Taylor M, Vangveravong S, Mach RH, Dillon GH, Luedtke RR (2013). "The effect of SV 293, a D2 dopamine receptor-selective antagonist, on D2 receptor-mediated GIRK channel activation and adenylyl cyclase inhibition". Pharmacology. 92 (1–2): 84–9. doi:10.1159/000351971. PMID 23942137.
  21. Agnati LF, Ferré S, Genedani S, Leo G, Guidolin D, Filaferro M, Carriba P, Casadó V, Lluis C, Franco R, Woods AS, Fuxe K (Nov 2006). "Allosteric modulation of dopamine D2 receptors by homocysteine". Journal of Proteome Research. 5 (11): 3077–83. doi:10.1021/pr0601382. PMID 17081059.
  22. Beyaert MG, Daya RP, Dyck BA, Johnson RL, Mishra RK (Mar 2013). "PAOPA, a potent dopamine D2 receptor allosteric modulator, prevents and reverses behavioral and biochemical abnormalities in an amphetamine–sensitized preclinical animal model of schizophrenia". European Neuropsychopharmacology. 23 (3): 253–62. doi:10.1016/j.euroneuro.2012.04.010. PMID 22658400.
  23. Lane JR, Donthamsetti P, Shonberg J, Draper-Joyce CJ, Dentry S, Michino M, Shi L, López L, Scammells PJ, Capuano B, Sexton PM, Javitch JA, Christopoulos A (Sep 2014). "A new mechanism of allostery in a G protein–coupled receptor dimer". Nature Chemical Biology. 10 (9): 745–52. doi:10.1038/nchembio.1593. PMC 4138267. PMID 25108820.
  24. Maggio R, Scarselli M, Capannolo M, Millan MJ (Sep 2015). "Novel dimensions of D3 receptor function: Focus on heterodimerisation, transactivation and allosteric modulation". European Neuropsychopharmacology. 25 (9): 1470–9. doi:10.1016/j.euroneuro.2014.09.016. PMID 25453482.
  25. Silvano E, Millan MJ, Mannoury la Cour C, Han Y, Duan L, Griffin SA, Luedtke RR, Aloisi G, Rossi M, Zazzeroni F, Javitch JA, Maggio R (Nov 2010). "The tetrahydroisoquinoline derivative SB269,652 is an allosteric antagonist at dopamine D3 and D2 receptors". Molecular Pharmacology. 78 (5): 925–34. doi:10.1124/mol.110.065755. PMC 2981362. PMID 20702763.
  26. Matera, Carlo; Pucci, Luca; Fiorentini, Chiara; Fucile, Sergio; Missale, Cristina; Grazioso, Giovanni; Clementi, Francesco; Zoli, Michele; De Amici, Marco (2015-08-28). "Bifunctional compounds targeting both D2 and non-α7 nACh receptors: Design, synthesis and pharmacological characterization". European Journal of Medicinal Chemistry. 101: 367–383. doi:10.1016/j.ejmech.2015.06.039.
  27. Allen JA, Yost JM, Setola V, Chen X, Sassano MF, Chen M, Peterson S, Yadav PN, Huang XP, Feng B, Jensen NH, Che X, Bai X, Frye SV, Wetsel WC, Caron MG, Javitch JA, Roth BL, Jin J (November 2011). "Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy". Proceedings of the National Academy of Sciences of the United States of America. 108 (45): 18488–93. doi:10.1073/pnas.1104807108. PMC 3215024. PMID 22025698.
  28. Binda AV, Kabbani N, Lin R, Levenson R (Sep 2002). "D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N". Molecular Pharmacology. 62 (3): 507–13. doi:10.1124/mol.62.3.507. PMID 12181426.
  29. Smith FD, Oxford GS, Milgram SL (Jul 1999). "Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein". The Journal of Biological Chemistry. 274 (28): 19894–900. doi:10.1074/jbc.274.28.19894. PMID 10391935.
  30. Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R (Oct 2002). "Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor". The Journal of Neuroscience. 22 (19): 8476–86. PMID 12351722.
  31. Beaulieu JM, Espinoza S, Gainetdinov RR (Jan 2015). "Dopamine receptors - IUPHAR Review 13". British Journal of Pharmacology. 172 (1): 1–23. doi:10.1111/bph.12906. PMC 4280963. PMID 25671228.
  32. Grandy DK, Miller GM, Li JX (February 2016). ""TAARgeting Addiction"-The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference". Drug Alcohol Depend. 159: 9–16. doi:10.1016/j.drugalcdep.2015.11.014. PMID 26644139. This original observation of TAAR1 and DA D2R interaction has subsequently been confirmed and expanded upon with observations that both receptors can heterodimerize with each other under certain conditions ... Additional DA D2R/TAAR1 interactions with functional consequences are revealed by the results of experiments demonstrating that in addition to the cAMP/PKA pathway (Panas et al., 2012) stimulation of TAAR1-mediated signaling is linked to activation of the Ca++/PKC/NFAT pathway (Panas et al.,2012) and the DA D2R-coupled, G protein-independent AKT/GSK3 signaling pathway (Espinoza et al., 2015; Harmeier et al., 2015), such that concurrent TAAR1 and DA DR2R activation could result in diminished signaling in one pathway (e.g. cAMP/PKA) but retention of signaling through another (e.g., Ca++/PKC/NFA)
  33. Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A, Bettler B, Hoener MC (2015). "Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers". Eur Neuropsychopharmacol. 25 (11): 2049–61. doi:10.1016/j.euroneuro.2015.08.011. PMID 26372541. Interaction of TAAR1 with D2R altered the subcellular localization of TAAR1 and increased D2R agonist binding affinity.
  34. Maggio R, Millan MJ (Feb 2010). "Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance". Current Opinion in Pharmacology. 10 (1): 100–7. doi:10.1016/j.coph.2009.10.001. PMID 19896900.
  35. Hasbi A, O'Dowd BF, George SR (Feb 2010). "Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms". Current Opinion in Pharmacology. 10 (1): 93–9. doi:10.1016/j.coph.2009.09.011. PMC 2818238. PMID 19897420.
  36. Albizu L, Holloway T, González-Maeso J, Sealfon SC (Sep 2011). "Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors". Neuropharmacology. 61 (4): 770–7. doi:10.1016/j.neuropharm.2011.05.023. PMC 3556730. PMID 21645528.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.