CARE gene transcriptions: Difference between revisions

Jump to navigation Jump to search
mNo edit summary
Line 15: Line 15:
|pmid=
|pmid=
|accessdate=16 October 2018 }}</ref>
|accessdate=16 October 2018 }}</ref>
"ATF4 regulates transcription of its target genes through the formation of homodimers or heterooligomers with the transcription factors Jun, AP-1 and C/EBP<sup>38,39</sup> that bind to CARE (C/EBP-ATF) responsive elements having the consensus sequence XTTXCATCA (where X = G, A or T).<sup>39</sup> In the region from -625 to -618 bp relative to the ''SESN2'' translation start codon (from -228 to -221 bp relative to the transcription start site) we found a candidate sequence for the ATF4 binding site TTTTCATCA."<ref name=Garaeva>{{ cite journal
|author=Alisa A. Garaeva, Irina E. Kovaleva, Peter M. Chumakov & Alexandra G. Evstafieva
|title=Mitochondrial dysfunction induces ''SESN2'' gene expression through Activating Transcription Factor 4
|journal=Cell Cycle
|date=15 January 2016
|volume=15
|issue=1
|pages=64-71
|url=https://www.tandfonline.com/doi/full/10.1080/15384101.2015.1120929
|arxiv=
|bibcode=
|doi=10.1080/15384101.2015.1120929
|pmid=26771712
|accessdate=5 September 2020 }}</ref>


==CARE sampling of A1BG promoters==
==CARE sampling of A1BG promoters==

Revision as of 00:05, 18 November 2020

Editor-In-Chief: Henry A. Hoff

"Some other cis-acting elements, such as pyrimidine boxes (GGTTTT) and TAT boxes (TATCCAT), are usually present in the vicinity of the GARE sequence of genes regulated by GA in cereal aleurone cells (Gubler and Jacobsen 1992; Cercos et al. 1999; Tsuji et al. 2006). For example, GARE and a novel CARE (CAACTC regulatory elements) elements are present in the promoter of rice RAmy1A (Ueguchi-Tanaka et al. 2000; Sutoh and Yamauchi 2003). Cis-element analyses have shown that the OsGAMYB protein activates RAmy1A expression through interaction with GARE in the promoter (Washio 2003). In addition, GARE and CARE are also present in a cysteine proteinase gene REP-1, which is expressed in rice aleurone and is induced by GAs and repressed by ABA. These two elements have been identified as necessary and sufficient for conferring GA inducibility of the REP-1 promoter. Mutations of CARE in the promoters of RAmy1A and REP-1 result in loss of GA inducibility and GAMYB transactivation, suggesting that CARE is a regulatory element for the GA-inducible expression of hydrolase genes in germinating seeds (Sutoh and Yamauchi 2003)."[1]

"ATF4 regulates transcription of its target genes through the formation of homodimers or heterooligomers with the transcription factors Jun, AP-1 and C/EBP38,39 that bind to CARE (C/EBP-ATF) responsive elements having the consensus sequence XTTXCATCA (where X = G, A or T).39 In the region from -625 to -618 bp relative to the SESN2 translation start codon (from -228 to -221 bp relative to the transcription start site) we found a candidate sequence for the ATF4 binding site TTTTCATCA."[2]

CARE sampling of A1BG promoters

For the Basic programs (starting with SuccessablesCARE.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), including extending the number of nts from 958 to 4445, the programs are, are looking for, and found:

  1. negative strand in the negative direction (from ZSCAN22 to A1BG) is SuccessablesCARE--.bas, looking for 3'-CAACTC-5', 1, 3'-CAACTC-5', 86,
  2. negative strand in the positive direction (from ZNF497 to A1BG) is SuccessablesCARE-+.bas, looking for 3'-CAACTC-5', 1, 3'-CAACTC-5', 3292,
  3. positive strand in the negative direction is SuccessablesCARE+-.bas, looking for 3'-CAACTC-5', 0,
  4. positive strand in the positive direction is SuccessablesCARE++.bas, looking for 3'-CAACTC-5', 0,
  5. complement, negative strand, negative direction is SuccessablesCAREc--.bas, looking for 3'-GTTGAG-5', 0,
  6. complement, negative strand, positive direction is SuccessablesCAREc-+.bas, looking for 3'-GTTGAG-5', 0,
  7. complement, positive strand, negative direction is SuccessablesCAREc+-.bas, looking for 3'-GTTGAG-5', 1, 3'-GTTGAG-5', 86,
  8. complement, positive strand, positive direction is SuccessablesCAREc++.bas, looking for 3'-GTTGAG-5', 1, 3'-GTTGAG-5', 3292,
  9. inverse complement, negative strand, negative direction is SuccessablesCAREci--.bas, looking for 3'-GAGTTG-5', 1, 3'-GAGTTG-5', 1406,
  10. inverse complement, negative strand, positive direction is SuccessablesCAREci-+.bas, looking for 3'-GAGTTG-5', 0,
  11. inverse complement, positive strand, negative direction is SuccessablesCAREci+-.bas, looking for 3'-GAGTTG-5', 4, 3'-GAGTTG-5', 2592, 3'-GAGTTG-5', 2704, 3'-GAGTTG-5', 3115, 3'-GAGTTG-5', 4096,
  12. inverse complement, positive strand, positive direction is SuccessablesCAREci++.bas, looking for 3'-GAGTTG-5', 2, 3'-GAGTTG-5', 1621, 3'-GAGTTG-5', 3290,
  13. inverse, negative strand, negative direction, is SuccessablesCAREi--.bas, looking for 3'-CTCAAC-5', 4, 3'-CTCAAC-5', 2592, 3'-CTCAAC-5', 2704, 3'-CTCAAC-5', 3115, 3'-CTCAAC-5', 4096,
  14. inverse, negative strand, positive direction, is SuccessablesCAREi-+.bas, looking for 3'-CTCAAC-5', 2, 3'-CTCAAC-5', 1621, 3'-CTCAAC-5', 3290,
  15. inverse, positive strand, negative direction, is SuccessablesCAREi+-.bas, looking for 3'-CTCAAC-5', 1, 3'-CTCAAC-5', 1406,
  16. inverse, positive strand, positive direction, is SuccessablesCAREi++.bas, looking for 3'-CTCAAC-5', 0.

CARE distal promoters

Negative strand, negative direction: 5'-GAGTTG-3' at 1406, 5'-CAACTC-3' at 86, and complements.

Positive strand, negative direction: 5'-GAGTTG-3' at 4096, 5'-GAGTTG-3' at 3115, 5'-GAGTTG-3' at 2704, 5'-GAGTTG-3' at 2592, and complements.

Negative strand, positive direction: 5'-CAACTC-3' at 3292, and complement.

Positive strand, positive direction: 5'-GAGTTG-3' at 3290, 5'-GAGTTG-3' at 1621, and complements.

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

Initial content for this page in some instances came from Wikiversity.

See also

References

  1. Liu-Min Fan, Xiaoyan Feng, Yu Wang and Xing Wang Deng (2007). "Gibberellin Signal Transduction in Rice". Journal of Integrative Plant Biology. 49 (6): 731−741. doi:10.1111/j.1744-7909.2007.00511.x. Retrieved 16 October 2018.
  2. Alisa A. Garaeva, Irina E. Kovaleva, Peter M. Chumakov & Alexandra G. Evstafieva (15 January 2016). "Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4". Cell Cycle. 15 (1): 64–71. doi:10.1080/15384101.2015.1120929. PMID 26771712. Retrieved 5 September 2020.

External links

Template:Sisterlinks