Sterol response element gene transcriptions: Difference between revisions

Jump to navigation Jump to search
mNo edit summary
Line 35: Line 35:
|accessdate=5 September 2020 }}</ref>
|accessdate=5 September 2020 }}</ref>


==Samplings==
==SRE (Branco) samplings==


Copying the SRE consensus: 5'-TCGTATA-3' and putting the sequence in "⌘F" finds no location between ZNF497 and A1BG and no location between ZSCAN22 and A1BG as can be found by the computer programs.
Copying the SRE consensus: TCGTATA and putting the sequence in "⌘F" finds no location between ZNF497 and A1BG and no location between ZSCAN22 and A1BG as can be found by the computer programs.


Copying the SRE consensus: 5'-CAGCAGATTGCG-3' and putting the sequence in "⌘F" finds no location between ZNF497 and A1BG and no location between ZSCAN22 and A1BG as can be found by the computer programs.
For the Basic programs testing consensus sequence TCGTATA (starting with SuccessablesSREB.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:
# negative strand, negative direction, looking for TCGTATA, 0.
# positive strand, negative direction, looking for AAAAAAAA, 0.
# positive strand, positive direction, looking for AAAAAAAA, 0.
# negative strand, positive direction, looking for AAAAAAAA, 0.
# complement, negative strand, negative direction, looking for AGCATAT, 0.
# complement, positive strand, negative direction, looking for TTTTTTTT, 0.
# complement, positive strand, positive direction, looking for TTTTTTTT, 0.
# complement, negative strand, positive direction, looking for TTTTTTTT, 0.
# inverse complement, negative strand, negative direction, looking for TATACGA, 0.
# inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
# inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
# inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
# inverse negative strand, negative direction, looking for ATATGCT, 0.
# inverse positive strand, negative direction, looking for AAAAAAAA, 0.
# inverse positive strand, positive direction, looking for AAAAAAAA, 0.
# inverse negative strand, positive direction, looking for AAAAAAAA, 0.
 
===SREB UTRs===
{{main|UTR promoter gene transcriptions}}
 
===SREB core promoters===
{{main|Core promoter gene transcriptions}}
 
===SREB proximal promoters===
{{main|Proximal promoter gene transcriptions}}
 
===SREB distal promoters===
{{main|Distal promoter gene transcriptions}}
 
==SRE (Yao) samplings==
 
Copying the SRE consensus: NAGCAGATTGCG and putting the sequence in "⌘F" finds no location between ZNF497 and A1BG and no location between ZSCAN22 and A1BG as can be found by the computer programs.
 
For the Basic programs testing consensus sequence NAGCAGATTGCG (starting with SuccessablesSREY.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:
# negative strand, negative direction, looking for NAGCAGATTGCG, 0.
# positive strand, negative direction, looking for AAAAAAAA, 0.
# positive strand, positive direction, looking for AAAAAAAA, 0.
# negative strand, positive direction, looking for AAAAAAAA, 0.
# complement, negative strand, negative direction, looking for NTCATCTAACGC, 0.
# complement, positive strand, negative direction, looking for TTTTTTTT, 0.
# complement, positive strand, positive direction, looking for TTTTTTTT, 0.
# complement, negative strand, positive direction, looking for TTTTTTTT, 0.
# inverse complement, negative strand, negative direction, looking for CGCAATCTACTN, 0.
# inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
# inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
# inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
# inverse negative strand, negative direction, looking for GCGTTAGACGAN, 0.
# inverse positive strand, negative direction, looking for AAAAAAAA, 0.
# inverse positive strand, positive direction, looking for AAAAAAAA, 0.
# inverse negative strand, positive direction, looking for AAAAAAAA, 0.
 
===SREY UTRs===
{{main|UTR promoter gene transcriptions}}
 
===SREY core promoters===
{{main|Core promoter gene transcriptions}}
 
===SREY proximal promoters===
{{main|Proximal promoter gene transcriptions}}
 
===SREY distal promoters===
{{main|Distal promoter gene transcriptions}}
 
==Acknowledgements==
 
The content on this page was first contributed by: Henry A. Hoff.


==See also==
==See also==
{{div col|colwidth=20em}}
{{div col|colwidth=20em}}
* [[A1BG gene transcription core promoters]]
* [[A1BG gene transcriptions]]
* [[A1BG regulatory elements and regions]]
* [[A1BG response element gene transcriptions]]
* [[A1BG response element negative results]]
* [[A1BG response element positive results]]
* [[Complex locus A1BG and ZNF497]]
* [[Complex locus A1BG and ZNF497]]
* [[Transcription factor]]
{{Div col end}}
{{Div col end}}


Line 51: Line 122:


==External links==
==External links==
* [http://www.genome.jp/ GenomeNet KEGG database]
* [http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene Home - Gene - NCBI]
* [http://www.ncbi.nlm.nih.gov/sites/gquery NCBI All Databases Search]
* [http://www.ncbi.nlm.nih.gov/ncbisearch/ NCBI Site Search]
* [http://www.ncbi.nlm.nih.gov/pccompound PubChem Public Chemical Database]


<!-- footer templates -->
<!-- footer templates -->
Line 56: Line 132:


<!-- footer categories -->
<!-- footer categories -->
[[Category:Resources last modified in September 2020]]
[[Category:Resources last modified in February 2021]]

Revision as of 18:27, 28 February 2021

Associate Editor(s)-in-Chief: Henry A. Hoff

"These genomic sequences were analysed for the presence of sterol-response elements (SRE) motif (5'-TCGTATA-3') [...] using the NCBI BLAST tool."[1]

Human genes

Consensus sequences

Consensus sequence for the sterol regulatory element is AGCAGATTGCG or CAGCAGATTGCG.[2]

SRE (Branco) samplings

Copying the SRE consensus: TCGTATA and putting the sequence in "⌘F" finds no location between ZNF497 and A1BG and no location between ZSCAN22 and A1BG as can be found by the computer programs.

For the Basic programs testing consensus sequence TCGTATA (starting with SuccessablesSREB.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:

  1. negative strand, negative direction, looking for TCGTATA, 0.
  2. positive strand, negative direction, looking for AAAAAAAA, 0.
  3. positive strand, positive direction, looking for AAAAAAAA, 0.
  4. negative strand, positive direction, looking for AAAAAAAA, 0.
  5. complement, negative strand, negative direction, looking for AGCATAT, 0.
  6. complement, positive strand, negative direction, looking for TTTTTTTT, 0.
  7. complement, positive strand, positive direction, looking for TTTTTTTT, 0.
  8. complement, negative strand, positive direction, looking for TTTTTTTT, 0.
  9. inverse complement, negative strand, negative direction, looking for TATACGA, 0.
  10. inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
  11. inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
  12. inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
  13. inverse negative strand, negative direction, looking for ATATGCT, 0.
  14. inverse positive strand, negative direction, looking for AAAAAAAA, 0.
  15. inverse positive strand, positive direction, looking for AAAAAAAA, 0.
  16. inverse negative strand, positive direction, looking for AAAAAAAA, 0.

SREB UTRs

SREB core promoters

SREB proximal promoters

SREB distal promoters

SRE (Yao) samplings

Copying the SRE consensus: NAGCAGATTGCG and putting the sequence in "⌘F" finds no location between ZNF497 and A1BG and no location between ZSCAN22 and A1BG as can be found by the computer programs.

For the Basic programs testing consensus sequence NAGCAGATTGCG (starting with SuccessablesSREY.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:

  1. negative strand, negative direction, looking for NAGCAGATTGCG, 0.
  2. positive strand, negative direction, looking for AAAAAAAA, 0.
  3. positive strand, positive direction, looking for AAAAAAAA, 0.
  4. negative strand, positive direction, looking for AAAAAAAA, 0.
  5. complement, negative strand, negative direction, looking for NTCATCTAACGC, 0.
  6. complement, positive strand, negative direction, looking for TTTTTTTT, 0.
  7. complement, positive strand, positive direction, looking for TTTTTTTT, 0.
  8. complement, negative strand, positive direction, looking for TTTTTTTT, 0.
  9. inverse complement, negative strand, negative direction, looking for CGCAATCTACTN, 0.
  10. inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
  11. inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
  12. inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
  13. inverse negative strand, negative direction, looking for GCGTTAGACGAN, 0.
  14. inverse positive strand, negative direction, looking for AAAAAAAA, 0.
  15. inverse positive strand, positive direction, looking for AAAAAAAA, 0.
  16. inverse negative strand, positive direction, looking for AAAAAAAA, 0.

SREY UTRs

SREY core promoters

SREY proximal promoters

SREY distal promoters

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

See also

References

  1. J. Branco, M. Ola, R. M. Silva, E. Fonseca, N. C. Gomes, C. Martins-Cruz, A. P. Silva, A. Silva-Dias, C. Pina-Vaz, C. Erraught, L. Brennan, A. G. Rodrigues, G. Butler and I. M. Miranda (August 2017). "Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 and NDT80 in Candida parapsilosis azole resistance". Clinical Microbiology and Infection. 23 (8): 575.e1–575.e8. doi:10.1016/j.cmi.2017.02.002. PMID 28196695. Retrieved 5 September 2020.
  2. D. W. Yao, J. Luo, Q. Y. He, J. Li, H. Wang, H. B. Shi, H. F. Xu, M. Wang and J. J. Loor (May 2016). "Characterization of the liver X receptor-dependent regulatory mechanism of goat stearoyl-coenzyme A desaturase 1 gene by linoleic acid". Journal of Dairy Science. 99 (5): 3945–3957. doi:10.3168/jds.2015-10601. PMID 26947306. Retrieved 5 September 2020.

External links