GABAB receptor: Difference between revisions

Jump to navigation Jump to search
m (replaced image with vector version)
 
Line 39: Line 39:
}}
}}


'''GABA<sub>B</sub> receptors''' (GABA<sub>B</sub>R) are [[metabotropic]] [[transmembrane receptor]]s for [[gamma-aminobutyric acid]] (GABA) that are linked via [[G-protein]]s to [[potassium]] channels.<ref name="Chen">{{cite journal |vauthors=Chen K, Li HZ, Ye N, Zhang J, Wang JJ | title = Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro | journal = Brain Res Bull | volume = 67 | issue = 4 | pages = 310–8 | year = 2005 | pmid = 16182939 | doi = 10.1016/j.brainresbull.2005.07.004 }}</ref> The changing potassium concentrations hyperpolarize the cell at the end of an action potential.
'''GABA<sub>B</sub> receptors''' (GABA<sub>B</sub>R) are [[metabotropic]] [[transmembrane receptor]]s for [[gamma-aminobutyric acid]] (GABA) that are linked via [[G-protein]]s to [[potassium]] channels.<ref name="Chen">{{cite journal |vauthors=Chen K, Li HZ, Ye N, Zhang J, Wang JJ | title = Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro | journal = Brain Res Bull | volume = 67 | issue = 4 | pages = 310–8 | year = 2005 | pmid = 16182939 | doi = 10.1016/j.brainresbull.2005.07.004 }}</ref> The changing potassium concentrations hyperpolarize the cell at the end of an action potential. The reversal potential of the GABA<sub>B</sub>-mediated IPSP is –100 mV, which is much more hyperpolarized than the [[GABAA receptor|GABA<sub>A</sub>]] IPSP.  GABA<sub>B</sub> receptors are found in the [[central nervous system]] and the [[autonomic nervous system|autonomic]] division of the [[peripheral nervous system]].<ref>{{cite journal|last1=Hyland|first1=NP|last2=Cryan|first2=JF|title=A Gut Feeling about GABA: Focus on GABA(B) Receptors.|journal=Frontiers in Pharmacology|date=2010|volume=1|pages=124|doi=10.3389/fphar.2010.00124|pmid=21833169|pmc=3153004}}</ref>
The reversal potential of the GABA<sub>B</sub>-mediated IPSP is -100 mV, which is much more hyperpolarized than the [[GABAA receptor|GABA<sub>A</sub>]] IPSP.  GABA<sub>B</sub> receptors are found in the [[central nervous system]] and the [[autonomic nervous system|autonomic]] division of the [[peripheral nervous system]].<ref>{{cite journal|last1=Hyland|first1=NP|last2=Cryan|first2=JF|title=A Gut Feeling about GABA: Focus on GABA(B) Receptors.|journal=Frontiers in Pharmacology|date=2010|volume=1|pages=124|doi=10.3389/fphar.2010.00124|pmid=21833169}}</ref>


The receptors were first named in 1981 when their distribution in the CNS was determined, which was determined by [[Norman Bowery]] and his team using radioactively labelled [[baclofen]].<ref>{{cite journal|last1=Hill|first1=DR|last2=Bowery|first2=NG|title=3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain.|journal=Nature|date=12 March 1981|volume=290|issue=5802|pages=149–52|pmid=6259535|doi=10.1038/290149a0}}</ref>
The receptors were first named in 1981 when their distribution in the CNS was determined, which was determined by [[Norman Bowery]] and his team using radioactively labelled [[baclofen]].<ref>{{cite journal|last1=Hill|first1=DR|last2=Bowery|first2=NG|title=3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain.|journal=Nature|date=12 March 1981|volume=290|issue=5802|pages=149–52|pmid=6259535|doi=10.1038/290149a0|bibcode=1981Natur.290..149H}}</ref>


==Functions==
==Functions==
They can stimulate the opening of K<sup>+</sup> [[ion channel|channels]] which brings the [[neuron]] closer to the [[Reversal potential|equilibrium potential]] of K<sup>+</sup>. This reduces the frequency of [[action potential]]s which reduces [[neurotransmitter]] release.{{Citation needed|date=October 2015}} Thus GABA<sub>B</sub> receptors are considered inhibitory receptors.{{by whom|date=May 2016}}
They can stimulate the opening of K<sup>+</sup> [[ion channel|channels]] which brings the [[neuron]] closer to the [[Reversal potential|equilibrium potential]] of K<sup>+</sup>. This reduces the frequency of [[action potential]]s which reduces [[neurotransmitter]] release.{{Citation needed|date=October 2015}} Thus GABA<sub>B</sub> receptors are inhibitory receptors.


GABA<sub>B</sub> receptors can also reduce the activity of [[adenylyl cyclase]]  and decrease the [[cell (biology)|cell]]’s [[Electrical conductance|conductance]] to Ca<sup>2+</sup>.{{Citation needed|date=October 2015}}
GABA<sub>B</sub> receptors also reduces the activity of [[adenylyl cyclase]]  and [[Ca channels|Ca<sup>2+</sup> channels]] by using G-proteins with [[GiG0 alpha subunits|G<sub>i</sub>/G<sub>0</sub> α subunits]].<ref>{{cite book|title=Rang and Dale's Pharmacology|last1=Rang|first1=H. P.|last2=Dale|first2=M. Maureen|last3=Ritter|first3=James M.|last4=Flower|first4=Rod J.|last5=Henderson|first5=Graeme|publisher=Elsevier, Churchill Livingstone|year=2016|isbn=978-0-7020-5362-7|edition=8th|location=|pages=462|oclc=903234097}}</ref>


GABA<sub>B</sub> receptors are involved in behavioral actions of [[ethanol]],<ref>{{cite journal |vauthors=Dzitoyeva S, Dimitrijevic N, Manev H | title = Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence | journal = Proc Natl Acad Sci USA | volume = 100 | issue = 9 | pages = 5485–90 | year = 2003 | pmid = 12692303 | pmc = 154371 | doi = 10.1073/pnas.0830111100 | bibcode = 2003PNAS..100.5485D }}</ref> [[gamma-Hydroxybutyric acid]] (GHB),<ref>{{cite journal |vauthors=Dimitrijevic N, Dzitoyeva S, Satta R, Imbesi M, Yildiz S, Manev H | title = Drosophila GABA(B) receptors are involved in behavioral effects of gamma-hydroxybutyric acid (GHB) | journal = Eur J Pharmacol | volume = 519 | issue = 3 | pages = 246–52 | year = 2005 | pmid = 16129424 | doi = 10.1016/j.ejphar.2005.07.016 }}</ref> and possibly in pain.<ref>{{cite journal |vauthors=Manev H, Dimitrijevic N | title = Drosophila model for in vivo pharmacological analgesia research | journal = Eur J Pharmacol | volume = 491 | issue = 2–3 | pages = 207–8 | year = 2004 | pmid = 15140638 | doi = 10.1016/j.ejphar.2004.03.030 }}</ref> Recent research suggests that these receptors may play an important developmental role.<ref>{{cite journal |vauthors=Dzitoyeva S, Gutnov A, Imbesi M, Dimitrijevic N, Manev H | title = Developmental role of GABAB(1) receptors in Drosophila | journal = Brain Res Dev Brain Res | volume = 158 | issue = 1–2 | pages = 111–4 | year = 2005 | pmid = 16054235 | doi = 10.1016/j.devbrainres.2005.06.005 }}</ref>
GABA<sub>B</sub> receptors are involved in behavioral actions of [[ethanol]],<ref>{{cite journal |vauthors=Dzitoyeva S, Dimitrijevic N, Manev H | title = Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence | journal = Proc Natl Acad Sci USA | volume = 100 | issue = 9 | pages = 5485–90 | year = 2003 | pmid = 12692303 | pmc = 154371 | doi = 10.1073/pnas.0830111100 | bibcode = 2003PNAS..100.5485D }}</ref> [[gamma-Hydroxybutyric acid]] (GHB),<ref>{{cite journal |vauthors=Dimitrijevic N, Dzitoyeva S, Satta R, Imbesi M, Yildiz S, Manev H | title = Drosophila GABA(B) receptors are involved in behavioral effects of gamma-hydroxybutyric acid (GHB) | journal = Eur J Pharmacol | volume = 519 | issue = 3 | pages = 246–52 | year = 2005 | pmid = 16129424 | doi = 10.1016/j.ejphar.2005.07.016 }}</ref> and possibly in pain.<ref>{{cite journal |vauthors=Manev H, Dimitrijevic N | title = Drosophila model for in vivo pharmacological analgesia research | journal = Eur J Pharmacol | volume = 491 | issue = 2–3 | pages = 207–8 | year = 2004 | pmid = 15140638 | doi = 10.1016/j.ejphar.2004.03.030 }}</ref> Recent research suggests that these receptors may play an important developmental role.<ref>{{cite journal |vauthors=Dzitoyeva S, Gutnov A, Imbesi M, Dimitrijevic N, Manev H | title = Developmental role of GABAB(1) receptors in Drosophila | journal = Brain Res Dev Brain Res | volume = 158 | issue = 1–2 | pages = 111–4 | year = 2005 | pmid = 16054235 | doi = 10.1016/j.devbrainres.2005.06.005 }}</ref>
Line 75: Line 74:


===Positive Allosteric Modulators===
===Positive Allosteric Modulators===
*[[CGP-7930]]<ref name="pmid11641424">{{cite journal |vauthors=Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, Bettler B, Kaupmann K | title = Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501 | journal = Mol. Pharmacol. | volume = 60 | issue = 5 | pages = 963–71 | date = November 2001 | pmid = 11641424 | doi =  | url = http://molpharm.aspetjournals.org/cgi/content/abstract/60/5/963 }}</ref><ref name="pmid17894647">{{cite journal |vauthors=Adams CL, Lawrence AJ | title = CGP7930: a positive allosteric modulator of the GABAB receptor | journal = CNS Drug Rev | volume = 13 | issue = 3 | pages = 308–16 | year = 2007 | pmid = 17894647 | doi = 10.1111/j.1527-3458.2007.00021.x | url =  }}</ref>
*[[CGP-7930]]<ref name="pmid11641424">{{cite journal |vauthors=Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, Bettler B, Kaupmann K | title = Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501 | journal = Mol. Pharmacol. | volume = 60 | issue = 5 | pages = 963–71 | date = November 2001 | pmid = 11641424 | doi =  10.1124/mol.60.5.963| url = http://molpharm.aspetjournals.org/cgi/content/abstract/60/5/963 }}</ref><ref name="pmid17894647">{{cite journal |vauthors=Adams CL, Lawrence AJ | title = CGP7930: a positive allosteric modulator of the GABAB receptor | journal = CNS Drug Rev | volume = 13 | issue = 3 | pages = 308–16 | year = 2007 | pmid = 17894647 | doi = 10.1111/j.1527-3458.2007.00021.x | url =  }}</ref>
*[[BHFF]]
*[[BHFF]]
*[[Fendiline]]
*[[Fendiline]]
Line 109: Line 108:
{{G protein-coupled receptors|g3}}
{{G protein-coupled receptors|g3}}


[[Category:G protein coupled receptors]]
[[Category:G protein-coupled receptors]]
[[Category:GABA]]
[[Category:GABA]]

Revision as of 18:00, 24 September 2018

gamma-aminobutyric acid (GABA) B receptor, 1
Identifiers
SymbolGABBR1
Entrez2550
HUGO4070
OMIM603540
RefSeqNM_021905
UniProtQ9UBS5
Other data
LocusChr. 6 p21.3
gamma-aminobutyric acid (GABA) B receptor, 2
Identifiers
SymbolGABBR2
Alt. symbolsGPR51
Entrez9568
HUGO4507
OMIM607340
RefSeqNM_005458
UniProtO75899
Other data
LocusChr. 9 q22.1-22.3

GABAB receptors (GABABR) are metabotropic transmembrane receptors for gamma-aminobutyric acid (GABA) that are linked via G-proteins to potassium channels.[1] The changing potassium concentrations hyperpolarize the cell at the end of an action potential. The reversal potential of the GABAB-mediated IPSP is –100 mV, which is much more hyperpolarized than the GABAA IPSP. GABAB receptors are found in the central nervous system and the autonomic division of the peripheral nervous system.[2]

The receptors were first named in 1981 when their distribution in the CNS was determined, which was determined by Norman Bowery and his team using radioactively labelled baclofen.[3]

Functions

They can stimulate the opening of K+ channels which brings the neuron closer to the equilibrium potential of K+. This reduces the frequency of action potentials which reduces neurotransmitter release.[citation needed] Thus GABAB receptors are inhibitory receptors.

GABAB receptors also reduces the activity of adenylyl cyclase and Ca2+ channels by using G-proteins with Gi/G0 α subunits.[4]

GABAB receptors are involved in behavioral actions of ethanol,[5] gamma-Hydroxybutyric acid (GHB),[6] and possibly in pain.[7] Recent research suggests that these receptors may play an important developmental role.[8]

Structure

GABAB Receptors are similar in structure to and in the same receptor family with metabotropic glutamate receptors.[9] There are two subtypes of the receptor, GABAB1 and GABAB2,[10] and these appear to assemble as heterodimers in neuronal membranes by linking up by their intracellular C termini.[9]

It is speculated that binding of GABA causes the subunits to swing shut around the agonist like a venus fly trap.[citation needed]

Ligands

GABA
File:4-Hydroxybutansäure - 4-Hydroxybutanoic acid.svg
GHB
File:Lesogaberan.svg
Lesogaberan

Agonists

File:CGP-7930 chemical structure.svg
CGP-7930

Positive Allosteric Modulators

File:Phaclofen.svg
Phaclofen
File:SCH-50911.svg
SCH-50911

Antagonists

See also

References

  1. Chen K, Li HZ, Ye N, Zhang J, Wang JJ (2005). "Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro". Brain Res Bull. 67 (4): 310–8. doi:10.1016/j.brainresbull.2005.07.004. PMID 16182939.
  2. Hyland, NP; Cryan, JF (2010). "A Gut Feeling about GABA: Focus on GABA(B) Receptors". Frontiers in Pharmacology. 1: 124. doi:10.3389/fphar.2010.00124. PMC 3153004. PMID 21833169.
  3. Hill, DR; Bowery, NG (12 March 1981). "3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain". Nature. 290 (5802): 149–52. Bibcode:1981Natur.290..149H. doi:10.1038/290149a0. PMID 6259535.
  4. Rang, H. P.; Dale, M. Maureen; Ritter, James M.; Flower, Rod J.; Henderson, Graeme (2016). Rang and Dale's Pharmacology (8th ed.). Elsevier, Churchill Livingstone. p. 462. ISBN 978-0-7020-5362-7. OCLC 903234097.
  5. Dzitoyeva S, Dimitrijevic N, Manev H (2003). "Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence". Proc Natl Acad Sci USA. 100 (9): 5485–90. Bibcode:2003PNAS..100.5485D. doi:10.1073/pnas.0830111100. PMC 154371. PMID 12692303.
  6. Dimitrijevic N, Dzitoyeva S, Satta R, Imbesi M, Yildiz S, Manev H (2005). "Drosophila GABA(B) receptors are involved in behavioral effects of gamma-hydroxybutyric acid (GHB)". Eur J Pharmacol. 519 (3): 246–52. doi:10.1016/j.ejphar.2005.07.016. PMID 16129424.
  7. Manev H, Dimitrijevic N (2004). "Drosophila model for in vivo pharmacological analgesia research". Eur J Pharmacol. 491 (2–3): 207–8. doi:10.1016/j.ejphar.2004.03.030. PMID 15140638.
  8. Dzitoyeva S, Gutnov A, Imbesi M, Dimitrijevic N, Manev H (2005). "Developmental role of GABAB(1) receptors in Drosophila". Brain Res Dev Brain Res. 158 (1–2): 111–4. doi:10.1016/j.devbrainres.2005.06.005. PMID 16054235.
  9. 9.0 9.1 MRC (Medical Research Council). 2003. Glutamate receptors: Structures and functions. University of Brisotol Centre for Synaptic Plasticity.
  10. Purves D., Augustine G.J., Fitzpatrick D., Katz L.C., LaMantia A.S., McNamara J.O., and Williams S.M. 2001. Neuroscience, Second Edition. Sinauer Associates, Inc.
  11. Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, Bettler B, Kaupmann K (November 2001). "Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501". Mol. Pharmacol. 60 (5): 963–71. doi:10.1124/mol.60.5.963. PMID 11641424.
  12. Adams CL, Lawrence AJ (2007). "CGP7930: a positive allosteric modulator of the GABAB receptor". CNS Drug Rev. 13 (3): 308–16. doi:10.1111/j.1527-3458.2007.00021.x. PMID 17894647.
  13. Paterson NE, Vlachou S, Guery S, Kaupmann K, Froestl W, Markou A (July 2008). "Positive modulation of GABA(B) receptors decreased nicotine self-administration and counteracted nicotine-induced enhancement of brain reward function in rats". J. Pharmacol. Exp. Ther. 326 (1): 306–14. doi:10.1124/jpet.108.139204. PMC 2574924. PMID 18445779.
  14. Urwyler S, Pozza MF, Lingenhoehl K, Mosbacher J, Lampert C, Froestl W, Koller M, Kaupmann K (October 2003). "N,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function". J. Pharmacol. Exp. Ther. 307 (1): 322–30. doi:10.1124/jpet.103.053074. PMID 12954816.
  15. Giotti A, Luzzi S, Spagnesi S, Zilletti L (1983). "Homotaurine: a GABAB antagonist in guinea-pig ileum". Br. J. Pharmacol. 79: 855–62. doi:10.1111/j.1476-5381.1983.tb10529.x. PMC 2044932. PMID 6652358.
  16. Kimura T, Saunders PA, Kim HS, Rheu HM, Oh KW, Ho IK (1994). "Interactions of ginsenosides with ligand-bindings of GABA(A) and GABA(B) receptors". General Pharmacology. 25 (1): 193–9. doi:10.1016/0306-3623(94)90032-9. PMID 8026706.
  17. Froestl W, Gallagher M, Jenkins H, Madrid A, Melcher T, Teichman S, Mondadori CG, Pearlman R (October 2004). "SGS742: the first GABA(B) receptor antagonist in clinical trials". Biochemical Pharmacology. 68 (8): 1479–87. doi:10.1016/j.bcp.2004.07.030. PMID 15451390.
  18. Bullock R (January 2005). "SGS-742 Novartis". Current Opinion in Investigational Drugs. 6 (1): 108–13. PMID 15675610.

External links