Galanin is a neuropeptide encoded by the GALgene,[1] that is widely expressed in the brain, spinal cord, and gut of humans as well as other mammals. Galanin signaling occurs through three G protein-coupled receptors.[2]
The functional role of galanin remains largely unknown; however, galanin is predominantly involved in the modulation and inhibition of action potentials in neurons. Galanin has been implicated in many biologically diverse functions, including: nociception, waking and sleep regulation, cognition, feeding, regulation of mood, regulation of blood pressure, it also has roles in development as well as acting as a trophic factor.[3] Galanin neurons in the medial preoptic area of the hypothalamus may govern parental behaviour.[4] Galanin is linked to a number of diseases including Alzheimer's disease, epilepsy as well as depression, eating disorders and cancer.[5][6] Galanin appears to have neuroprotective activity as its biosynthesis is increased 2-10 fold upon axotomy in the peripheral nervous system as well as when seizure activity occurs in the brain. It may also promote neurogenesis.[2]
Galanin was first identified from porcine intestinal extracts in 1978 by Professor Viktor Mutt and colleagues at the Karolinska Institute, Sweden[9] using a chemical assay technique that detects peptides according to its C-terminal alanine amide structure. Galanin is so-called because it contains an N-terminal glycine residue and a C-terminal alanine.[10] The structure of galanin was determined in 1983 by the same team, and the cDNA of galanin was cloned from a rat anterior pituitary library in 1987.[9]
Tissue distribution
Galanin is located predominantly in the central nervous system and gastrointestinal tract. Within the central nervous system, highest concentrations are found in the hypothalamus, with lower levels in the cortex and brainstem. Gastrointestinal galanin is most abundant in the duodenum, with lower concentrations in the stomach, small intestine, and colon.[11]
Structure
Endogenously occurring galanin sequences
Species
1
6
11
16
21
26 !
Pig
G W T L N
S A G Y L
L G P H A
I D N H R
S F H D K
Y G L A *
Human
G W T L N
S A G Y L
L G P H A
VG N H R
S F S D K
N G L T S **
Cow
G W T L N
S A G Y L
L G P H A
L D S H R
S F Q D K
H G L A *
Rat
G W T L N
S A G Y L
L G P H A
I D N H R
S F S D K
H G L T*
* C-terminal amide ** C-terminal free acid
Galanin is a peptide consisting of a chain of 29 amino acids (30 amino acids in humans) produced from the cleavage of a 123-amino acid protein known as prepro galanin, which is encoded by the GAL gene.[1] The sequence of this gene is highly conserved among mammals, showing over 85% homology between rat, mouse, porcine, bovine, and human sequences.[8] In these animal forms, the first 15 amino acids from the N-terminus are identical, but amino acids differ at several positions on the C-terminal end of the protein.
These slight differences in protein structure have far-reaching implications on their function. For example, porcine and rat galanin inhibit glucose-induced insulin secretion in rats and dogs but have no effect on insulin secretion in humans. This demonstrates that it is essential to study the effects of galanin and other regulatory peptides in their autologous species.[12]
The galanin family of protein consists of four proteins, of which GAL was the first to be identified. The second was galanin message-associated protein (GMAP), a 59- or 60-amino acid peptide also formed from the cleavage of prepro galanin.[10] The other two peptides, galanin-like peptide (GALP) and alarin, were identified relatively recently and are both encoded for in the same gene, the prepro GALP gene. GALP and alarin are produced by different post-transcriptional splicing of this gene.[13]
Galanin signalling occurs through three classes of receptors, GALR1, GALR2, and GALR3, which are all part of the G protein-coupled receptor (GPCR) superfamily. Galanin receptors are expressed in the central nervous system, in the pancreas, and on solid tumours. The level of expression of the different receptors varies at each location, and this distribution changes after injury to neurons.[2] Experiments into the function of the receptor subtypes involve mostly genetic knockout mice. The location of the receptor and the combination of receptors that are inhibited or stimulated heavily affect the outcome of galanin signalling.[2]
Clinical characteristics
Alzheimer's disease
One of the pathological features of the brain in the later stages of Alzheimer's disease is the presence of overgrown GAL-containing fibres innervating the surviving cholinergic neurons.[14] Another feature is an increase in the expression of GAL and GAL receptors, in which increases of up to 200% have been observed in postmortem brains of Alzheimer's patients.[2][13] The cause and role of this increase is poorly understood.[14][15]
It has been suggested that the hyper-innervation acts to promote the death of these neurons and that the inhibitory effect of galanin on cholinergic neurons worsened the degeneration of cognitive function in patients by decreasing the amount of acetylcholine available to these neurons.[2][14]
A second hypothesis has been generated based on data that suggest GAL is involved in protecting the hippocampus from excitotoxic damage and the neurons in the cholinergic basal forebrain from amyloid toxicity.[16] Studies of gene expression of CBF tissue suggests that the hyperinnervation of cholinergic neurons by GAL up regulates the transcription of factors that promote neuron function and survival. It is still unclear as to whether galanin acts to protect cholinergic neurons and promote their firing or whether it worsens the symptoms of this disease.
Epilepsy
Galanin in the hippocampus is an inhibitor of glutamate but not of GABA. This means that galanin is capable of increasing the seizure threshold[2] and, therefore, is expected to act as an anticonvulsant. To be specific, GalR1 has been linked to the suppression of spontaneous seizures.[17][18] An agonist antiepileptic drug candidate is NAX 5055.[19][20]
In development
It has been shown that galanin plays a role in the control of the early post-natal neural development of the dorsal root ganglion (DRG).[9] Galanin-mutant animals show a 13% decrease in the number of adult DRG cells as well as a 24% decrease in the percentage of cells expressing substance P. This suggests that the cell loss by apoptosis that usually occurs in the developing DRG is regulated by galanin and that the absence of galanin results in an increase in the number of cells that die.
After injury
In vitro experiments show that DRG cells removed from galanin mutants have impaired abilities to extend neurites in culture, in that the number of cells producing neurites is decreased by a third and the mean length of these processes was halved when compared to wild-type controls. In vivo, many of the actions of galanin in the brain after an injury are similar to those observed in the developing DRG. Adult mutant animals have been shown to be 35% less capable of regenerating the sciatic nerve after crush injury, which is linked to long-term functional problems.
Parental role in mice
A report has indicated that Galanin-expressing neurons in the medial preoptic area of the brain are responsible for regulating aggression towards pups by male mice.[4]
↑ 1.01.1Evans H, Baumgartner M, Shine J, Herzog H (December 1993). "Genomic organization and localization of the gene encoding human preprogalanin". Genomics. 18 (3): 473–7. doi:10.1016/S0888-7543(11)80002-9. PMID7508413.
↑Lundström L, Elmquist A, Bartfai T, Langel U (2005). "Galanin and its receptors in neurological disorders". Neuromolecular Med. 7 (1–2): 157–80. doi:10.1385/NMM:7:1-2:157. PMID16052044.
↑Berger A, Santic R, Hauser-Kronberger C, Schilling FH, Kogner P, Ratschek M, Gamper A, Jones N, Sperl W, Kofler B (June 2005). "Galanin and galanin receptors in human cancers". Neuropeptides. 39 (3): 353–9. doi:10.1016/j.npep.2004.12.016. PMID15944034.
↑ 9.09.19.2Wynick D, Thompson SW, McMahon SB (February 2001). "The role of galanin as a multi-functional neuropeptide in the nervous system". Current Opinion in Pharmacology. 1 (1): 73–7. doi:10.1016/S1471-4892(01)00006-6. PMID11712539.
↑Counts SE, Perez SE, Ginsberg SD, De Lacalle S, Mufson EJ (May 2003). "Galanin in Alzheimer disease". Mol. Interv. 3 (3): 137–56. doi:10.1124/mi.3.3.137. PMID14993421.
↑Ding X, MacTavish D, Kar S, Jhamandas JH (February 2006). "Galanin attenuates beta-amyloid (Abeta) toxicity in rat cholinergic basal forebrain neurons". Neurobiol. Dis. 21 (2): 413–20. doi:10.1016/j.nbd.2005.08.016. PMID16246567.
↑Bulaj G, Green BR, Lee HK, Robertson CR, White K, Zhang L, Sochanska M, Flynn SP, Scholl EA, Pruess TH, Smith MD, White HS (Dec 2008). "Design, synthesis, and characterization of high-affinity, systemically-active galanin analogues with potent anticonvulsant activities". Journal of Medicinal Chemistry. 51 (24): 8038–47. doi:10.1021/jm801088x. PMID19053761.
Vrontakis ME (Dec 2002). "Galanin: a biologically active peptide". Current Drug Targets. CNS and Neurological Disorders. 1 (6): 531–41. doi:10.2174/1568007023338914. PMID12769595.
Mufson EJ, Counts SE, Perez SE, Binder L (Jun 2005). "Galanin plasticity in the cholinergic basal forebrain in Alzheimer's disease and transgenic mice". Neuropeptides. 39 (3): 233–7. doi:10.1016/j.npep.2004.12.005. PMID15893372.
Robinson JK, Bartfai T, Langel U (Jun 2006). "Galanin/GALP receptors and CNS homeostatic processes". CNS & Neurological Disorders Drug Targets. 5 (3): 327–34. doi:10.2174/187152706777452281. PMID16787232.
McKnight GL, Karlsen AE, Kowalyk S, Mathewes SL, Sheppard PO, O'Hara PJ, Taborsky GJ (Jan 1992). "Sequence of human galanin and its inhibition of glucose-stimulated insulin secretion from RIN cells". Diabetes. 41 (1): 82–7. doi:10.2337/diabetes.41.1.82. PMID1370155.
Gai WP, Geffen LB, Blessing WW (Aug 1990). "Galanin immunoreactive neurons in the human hypothalamus: colocalization with vasopressin-containing neurons". The Journal of Comparative Neurology. 298 (3): 265–80. doi:10.1002/cne.902980302. PMID1698834.
Burleigh DE, Furness JB (Jun 1990). "Distribution and actions of galanin and vasoactive intestinal peptide in the human colon". Neuropeptides. 16 (2): 77–82. doi:10.1016/0143-4179(90)90115-F. PMID1701228.
Fried G, Meister B, Rådestad A (Oct 1990). "Peptide-containing nerves in the human pregnant uterine cervix: an immunohistochemical study exploring the effect of RU 486 (mifepristone)". Human Reproduction. 5 (7): 870–6. PMID1702449.
Hyde JF, Engle MG, Maley BE (Jul 1991). "Colocalization of galanin and prolactin within secretory granules of anterior pituitary cells in estrogen-treated Fischer 344 rats". Endocrinology. 129 (1): 270–6. doi:10.1210/endo-129-1-270. PMID1711463.
Bennet WM, Hill SF, Ghatei MA, Bloom SR (Sep 1991). "Galanin in the normal human pituitary and brain and in pituitary adenomas". The Journal of Endocrinology. 130 (3): 463–7. doi:10.1677/joe.0.1300463. PMID1719117.
Bauer FE, Christofides ND, Hacker GW, Blank MA, Polak JM, Bloom SR (1986). "Distribution of galanin immunoreactivity in the genitourinary tract of man and rat". Peptides. 7 (1): 5–10. doi:10.1016/0196-9781(86)90052-5. PMID2423990.
Bauer FE, Adrian TE, Christofides ND, Ferri GL, Yanaihara N, Polak JM, Bloom SR (Oct 1986). "Distribution and molecular heterogeneity of galanin in human, pig, guinea pig, and rat gastrointestinal tracts". Gastroenterology. 91 (4): 877–83. PMID2427385.
Tainio H, Vaalasti A, Rechardt L (1987). "The distribution of substance P-, CGRP-, galanin- and ANP-like immunoreactive nerves in human sweat glands". The Histochemical Journal. 19 (6–7): 375–80. doi:10.1007/BF01680455. PMID2444569.
Maggi CA, Santicioli P, Patacchini R, Turini D, Barbanti G, Beneforti P, Giuliani S, Meli A (Nov 1987). "Galanin: a potent modulator of excitatory neurotransmission in the human urinary bladder". European Journal of Pharmacology. 143 (1): 135–7. doi:10.1016/0014-2999(87)90744-8. PMID2446889.
Marti E, Gibson SJ, Polak JM, Facer P, Springall DR, Van Aswegen G, Aitchison M, Koltzenburg M (Dec 1987). "Ontogeny of peptide- and amine-containing neurones in motor, sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia, and rat skin". The Journal of Comparative Neurology. 266 (3): 332–59. doi:10.1002/cne.902660304. PMID2447134.
Beal MF, Clevens RA, Chattha GK, MacGarvey UM, Mazurek MF, Gabriel SM (Dec 1988). "Galanin-like immunoreactivity is unchanged in Alzheimer's disease and Parkinson's disease dementia cerebral cortex". Journal of Neurochemistry. 51 (6): 1935–41. doi:10.1111/j.1471-4159.1988.tb01181.x. PMID2460590.
Berrettini WH, Kaye WH, Sunderland T, May C, Gwirtsman HE, Mellow A, Albright A (1989). "Galanin immunoreactivity in human CSF: studies in eating disorders and Alzheimer's disease". Neuropsychobiology. 19 (2): 64–8. doi:10.1159/000118436. PMID2465504.