PCI complications: restenosis
Percutaneous coronary intervention Microchapters |
PCI Complications |
---|
PCI in Specific Patients |
PCI in Specific Lesion Types |
PCI complications: restenosis On the Web |
American Roentgen Ray Society Images of PCI complications: restenosis |
Directions to Hospitals Treating Percutaneous coronary intervention |
Risk calculators and risk factors for PCI complications: restenosis |
Editors-In-Chief: Alexandra Almonacid M.D.; Jeffrey J. Popma M.D. Associate Editor(s)-in-Chief: Anahita Deylamsalehi, M.D.[1]
Overview
Restenosis can occur in the implanted stent after performing PCI. One of the classification systems categorized restenosis based on being multifocal or its location in the stent (such as at the edge of the stent, or at the articulation or gap. The main mechanism causing restenosis after stent implication is neointimal hyperplasia. Restenosis after drug eluting stent implantation is generally more focal than following bare metal stent placement. Risk of ISR is lowered after presentation of new generations stents such as DES compared to BMS and first-generation DES. Balloon angioplasty, drug eluting stents, drug-coated balloons, scoring or cutting balloons, and vascular brachytherapy are some of the common approaches that have been explored as the restenosis treatment. Among all the treatment options, drug eluting stents appear to provide the most benefit.
Classification
The following are one of the classifications for restenosis:[1]
- Pattern I: Focal (≤ 10 mm in length) lesions
- Ia : Restenosis within the stent
- Ib : Restenosis at the edge of the stent
- Ic : Restenosis at the articulation or gap
- Id : Restenosis multifocal
- Pattern II: ISR >10 mm within the stent
- Pattern III: Includes ISR > 10 mm extending outside the stent
- Pattern IV: ISR totally occluded
The need for recurrent target lesion revascularization (TLR) increased with increasing ISR class, increasing from 19%, 35%, 50%, to 83% in classes I to IV, respectively (P <0.001)[1].
Pathophysiology
- Restenosis can occur in the implanted stent after performing PCI.[2]
- The main mechanism causing restenosis after stent implication is neointimal hyperplasia.[1][3][4][5]
- The pathophysiology of restenosis can be anticipated based on the time period that restenosis occurs.[2]
- Early stent thrombosis is usually due to residual target-lesion thrombus, stent failure, or nonadherence to dual antiplatelet therapy.
- Late stent thrombosis is usually associated with inadequate neointimal coverage or incomplete healing.
- Restenosis after drug eluting stent implantation is generally more focal than following bare metal stent placement.[6][7], and, with the sirolimus eluting stent, more is commonly at the margin of the stent due to balloon injury that is not covered with stent[6][7][8]
Epidemiology and Demographics
ISR is found in 5% to 10% of patients undergoing PCI.[9][10]
Causes
- Risk of ISR is lowered after presentation of new generations stents such as DES compared to BMS and first-generation DES.[11][12]
- Factors such as stent type, procedural characteristics, lesion location and patient-related factors are critical in the pathophysiology of stent thrombosis or restenosis.[9][13][14][15]
Diagnosis
- It is necessary to evaluate the underlying cause of stent thrombosis with intracoronary imaging (IVUS and OCT) in order to plan the proper treatment.[9][16]
- In the setting of in-stent restenosis (ISR) after bare metal stent (BMS) implantation, the risk of recurrence can be predicted by the pattern of restenosis.
Treatment
- The following approaches have been explored for restenosis treatments:[2]
- Balloon angioplasty
- Drug eluting stents
- Among all the treatment options, drug eluting stents appear to provide the most benefit.[2][17][18]
- Everolimus-eluting stents showed the best efficacy among other forms of drug eluting stents.[19][20]
- Drug-coated balloons
- Scoring or cutting balloons
- Vascular brachytherapy
- Vascular brachytherapy can be used as an additional tool to aid revascularization among patients with multiple stent layers or in those who have recurrent in stents restenosis with an artery that is not suitable to receive another DES, or undergoing a bypass surgery.[21]
- Overall, if chosen properly, vascular brachytherapy can bypass the need to implant another stent in patients who do have challenging circumstances.
- Atheroablative therapies
- CABG
- CABG is recommended as an effective treatment among the following patients with in stents restenosis:[2]
- When a patient experiences recurrent restenosis despite repeat PCI with DES
- When a patient experiences recurrent restenosis with diffuse in stents restenosis in large vessels
- When a patient experiences recurrent restenosis with a complex presentation such as CTO with multivessel disease
- CABG could be the preferred treatment in those with suitable anatomy
- CABG is recommended as an effective treatment among the following patients with in stents restenosis:[2]
- The type of in stent restenosis is essential in deciding one treatment over the others and the ultimate decision should be made individualized.
2021 ACA Guidline Recommendations
Class 1 Recommendation, Level of Evidence: A[2] |
If another PCI is planned for a patient with clinical in-stent restenosis (ISR), drug eluting stent (DES) is recommended with goal of outcome improvement (if anatomic factors and dual antiplatelet therapy (DAPT) compliance are considered). |
Class 2a Recommendation, Level of Evidence: C-EO [2] |
If a patient with recurrent symptomatic diffuse in-stent restenosis (ISR) has a revascularization indication, planning CABG is preferred over repeat PCI to lower recurrent events. |
Class 2b Recommendation, Level of Evidence: B-NR [2] |
In a patient with recurrent in-stent restenosis (ISR), brachytherapy could be helpful to improve symptoms |
References
- ↑ 1.0 1.1 1.2 Mehran R, Dangas G, Abizaid AS, Mintz GS, Lansky AJ, Satler LF; et al. (1999). "Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome". Circulation. 100 (18): 1872–8. PMID 10545431.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Writing Committee Members. Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM; et al. (2022). "2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". J Am Coll Cardiol. 79 (2): e21–e129. doi:10.1016/j.jacc.2021.09.006. PMID 34895950 Check
|pmid=
value (help). - ↑ Goto K, Zhao Z, Matsumura M, Dohi T, Kobayashi N, Kirtane AJ; et al. (2015). "Mechanisms and Patterns of Intravascular Ultrasound In-Stent Restenosis Among Bare Metal Stents and First- and Second-Generation Drug-Eluting Stents". Am J Cardiol. 116 (9): 1351–7. doi:10.1016/j.amjcard.2015.07.058. PMID 26341188.
- ↑ Kang SJ, Mintz GS, Park DW, Lee SW, Kim YH, Whan Lee C; et al. (2011). "Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis". Circ Cardiovasc Interv. 4 (1): 9–14. doi:10.1161/CIRCINTERVENTIONS.110.940320. PMID 21266707.
- ↑ Farb A, Sangiorgi G, Carter AJ, Walley VM, Edwards WD, Schwartz RS; et al. (1999). "Pathology of acute and chronic coronary stenting in humans". Circulation. 99 (1): 44–52. doi:10.1161/01.cir.99.1.44. PMID 9884378.
- ↑ 6.0 6.1 Popma JJ, Leon MB, Moses JW, Holmes DR, Cox N, Fitzpatrick M; et al. (2004). "Quantitative assessment of angiographic restenosis after sirolimus-eluting stent implantation in native coronary arteries". Circulation. 110 (25): 3773–80. doi:10.1161/01.CIR.0000150331.14687.4B. PMID 15596568.
- ↑ 7.0 7.1 Colombo A, Orlic D, Stankovic G, Corvaja N, Spanos V, Montorfano M; et al. (2003). "Preliminary observations regarding angiographic pattern of restenosis after rapamycin-eluting stent implantation". Circulation. 107 (17): 2178–80. doi:10.1161/01.CIR.0000070592.04766.36. PMID 12719283.
- ↑ Lemos PA, Saia F, Ligthart JM, Arampatzis CA, Sianos G, Tanabe K; et al. (2003). "Coronary restenosis after sirolimus-eluting stent implantation: morphological description and mechanistic analysis from a consecutive series of cases". Circulation. 108 (3): 257–60. doi:10.1161/01.CIR.0000083366.33686.11. PMID 12860901.
- ↑ 9.0 9.1 9.2 Dangas GD, Claessen BE, Caixeta A, Sanidas EA, Mintz GS, Mehran R (2010). "In-stent restenosis in the drug-eluting stent era". J Am Coll Cardiol. 56 (23): 1897–907. doi:10.1016/j.jacc.2010.07.028. PMID 21109112.
- ↑ Alfonso F, Byrne RA, Rivero F, Kastrati A (2014). "Current treatment of in-stent restenosis". J Am Coll Cardiol. 63 (24): 2659–73. doi:10.1016/j.jacc.2014.02.545. PMID 24632282.
- ↑ Tada T, Byrne RA, Simunovic I, King LA, Cassese S, Joner M; et al. (2013). "Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents: results from a registry of 18,334 patients". JACC Cardiovasc Interv. 6 (12): 1267–74. doi:10.1016/j.jcin.2013.06.015. PMID 24355117.
- ↑ Gada H, Kirtane AJ, Newman W, Sanz M, Hermiller JB, Mahaffey KW; et al. (2013). "5-year results of a randomized comparison of XIENCE V everolimus-eluting and TAXUS paclitaxel-eluting stents: final results from the SPIRIT III trial (clinical evaluation of the XIENCE V everolimus eluting coronary stent system in the treatment of patients with de novo native coronary artery lesions)". JACC Cardiovasc Interv. 6 (12): 1263–6. doi:10.1016/j.jcin.2013.07.009. PMID 24239202.
- ↑ Holmes DR, Kereiakes DJ, Garg S, Serruys PW, Dehmer GJ, Ellis SG; et al. (2010). "Stent thrombosis". J Am Coll Cardiol. 56 (17): 1357–65. doi:10.1016/j.jacc.2010.07.016. PMID 20946992.
- ↑ Singh M, Gersh BJ, McClelland RL, Ho KK, Willerson JT, Penny WF; et al. (2004). "Clinical and angiographic predictors of restenosis after percutaneous coronary intervention: insights from the Prevention of Restenosis With Tranilast and Its Outcomes (PRESTO) trial". Circulation. 109 (22): 2727–31. doi:10.1161/01.CIR.0000131898.18849.65. PMID 15173022.
- ↑ Stolker JM, Kennedy KF, Lindsey JB, Marso SP, Pencina MJ, Cutlip DE; et al. (2010). "Predicting restenosis of drug-eluting stents placed in real-world clinical practice: derivation and validation of a risk model from the EVENT registry". Circ Cardiovasc Interv. 3 (4): 327–34. doi:10.1161/CIRCINTERVENTIONS.110.946939. PMID 20606136.
- ↑ Fujii K, Mintz GS, Kobayashi Y, Carlier SG, Takebayashi H, Yasuda T; et al. (2004). "Contribution of stent underexpansion to recurrence after sirolimus-eluting stent implantation for in-stent restenosis". Circulation. 109 (9): 1085–8. doi:10.1161/01.CIR.0000121327.67756.19. PMID 14993129.
- ↑ Kastrati A, Mehilli J, von Beckerath N, Dibra A, Hausleiter J, Pache J; et al. (2005). "Sirolimus-eluting stent or paclitaxel-eluting stent vs balloon angioplasty for prevention of recurrences in patients with coronary in-stent restenosis: a randomized controlled trial". JAMA. 293 (2): 165–71. doi:10.1001/jama.293.2.165. PMID 15644543.
- ↑ Mehilli J, Byrne RA, Tiroch K, Pinieck S, Schulz S, Kufner S; et al. (2010). "Randomized trial of paclitaxel- versus sirolimus-eluting stents for treatment of coronary restenosis in sirolimus-eluting stents: the ISAR-DESIRE 2 (Intracoronary Stenting and Angiographic Results: Drug Eluting Stents for In-Stent Restenosis 2) study". J Am Coll Cardiol. 55 (24): 2710–6. doi:10.1016/j.jacc.2010.02.009. PMID 20226618.
- ↑ Siontis GC, Stefanini GG, Mavridis D, Siontis KC, Alfonso F, Pérez-Vizcayno MJ; et al. (2015). "Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis". Lancet. 386 (9994): 655–64. doi:10.1016/S0140-6736(15)60657-2. PMID 26334160.
- ↑ Giacoppo D, Gargiulo G, Aruta P, Capranzano P, Tamburino C, Capodanno D (2015). "Treatment strategies for coronary in-stent restenosis: systematic review and hierarchical Bayesian network meta-analysis of 24 randomised trials and 4880 patients". BMJ. 351: h5392. doi:10.1136/bmj.h5392. PMC 4632210. PMID 26537292. Review in: Evid Based Med. 2016 Jun;21(3):90
- ↑ Negi SI, Torguson R, Gai J, Kiramijyan S, Koifman E, Chan R; et al. (2016). "Intracoronary Brachytherapy for Recurrent Drug-Eluting Stent Failure". JACC Cardiovasc Interv. 9 (12): 1259–1265. doi:10.1016/j.jcin.2016.03.018. PMID 27339842.