Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

Jump to navigation Jump to search

Catecholaminergic polymorphic ventricular tachycardia Microchapters


Patient Information


Historical Perspective




Differentiating Catecholaminergic polymorphic ventricular tachycardia from other Diseases

Epidemiology and Demographics

Risk Factors


Natural History, Complications and Prognosis


Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings


Exercise Stress Testing

Genetic Testing


Echocardiography and Ultrasound

CT scan


Other Imaging Findings

Other Diagnostic Studies


Medical Therapy

Implantable Cardioverter-Defibrillator


Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Catecholaminergic polymorphic ventricular tachycardia exercise stress testing On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides


American Roentgen Ray Society Images of Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

All Images
Echo & Ultrasound
CT Images

Ongoing Trials at Clinical

US National Guidelines Clearinghouse

NICE Guidance

FDA on Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

CDC on Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

Catecholaminergic polymorphic ventricular tachycardia exercise stress testing in the news

Blogs on Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mounika Reddy Vadiyala, M.B.B.S.[2]


Exercise Stress Testing is the primary diagnostic test and the most helpful clinical tool in diagnosing CPVT as it can reproducibly evoke the typical ventricular tachycardia during acute adrenergic activation (exercise). During exercise stress testing, sinus rhythm accelerates and beyond a heart rate of 120-130 beats per minute, isolated and often monomorphic ventricular premature beats (VPBs) typically occur first and then increase with heart rate to bigeminy. Subsequently, the VPBs become polymorphic or bidircetional, and as the exercise increase, they form bursts of non-sustained polymorphic ventricular tachycardia or bidirectional ventricular tachycardia (VT). With continuous activity, the arrhythmia persists and becomes more rapid, eventually assuming the appearance of polymorphic ventricular tachycardia (VT), which is very fast, fibrillation-like and leads to syncope. The arrhythmias disappear on stopping the exercise. Bidirectional ventricular tachycardia (VT) is the hallmark finding of catecholaminergic polymorphic ventricular tachycardia.

Exercise Stress Testing

Exercise stress testing
Increase in sinus rhythm
Monomorphic premature ventricular contractions (PVCs)
Polymorphic PVC Bigeminy
Bidirectional PVC Bigeminy
Polymorphic VT
Bidirectional VT

ECG during exercise stress testing demonstrates increasing frequency of ventricular arrhythmias, degrading from bigeminy to a typical bidirectional ventricular tachycardia.[6] Courtesy: Shashank P Behere.

ECG tracing during exercise stress test shows the typical aspect of bidirectional ventricular tachycardia characterized by 180° alternating QRS axis on a beat-to-beat basis, with a right bundle branch block pattern suggesting a left ventricular origin.[7] Courtesy: Antoine Leenhardt


  1. 1.0 1.1 Leenhardt, Antoine; Lucet, Vincent; Denjoy, Isabelle; Grau, Francis; Ngoc, Dien Do; Coumel, Philippe (1995). "Catecholaminergic Polymorphic Ventricular Tachycardia in Children". Circulation. 91 (5): 1512–1519. doi:10.1161/01.CIR.91.5.1512. ISSN 0009-7322.
  2. Faggioni, Michela; Hwang, Hyun Seok; van der Werf, Christian; Nederend, Ineke; Kannankeril, Prince J.; Wilde, Arthur A.M.; Knollmann, Björn C. (2013). "Accelerated Sinus Rhythm Prevents Catecholaminergic Polymorphic Ventricular Tachycardia in Mice and in Patients". Circulation Research. 112 (4): 689–697. doi:10.1161/CIRCRESAHA.111.300076. ISSN 0009-7330.
  3. Cerrone, Marina; Noujaim, Sami F.; Tolkacheva, Elena G.; Talkachou, Arkadzi; O’Connell, Ryan; Berenfeld, Omer; Anumonwo, Justus; Pandit, Sandeep V.; Vikstrom, Karen; Napolitano, Carlo; Priori, Silvia G.; Jalife, José (2007). "Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia". Circulation Research. 101 (10): 1039–1048. doi:10.1161/CIRCRESAHA.107.148064. ISSN 0009-7330.
  4. Herron, Todd J.; Milstein, Michelle L.; Anumonwo, Justus; Priori, Silvia G.; Jalife, José (2010). "Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia". Heart Rhythm. 7 (8): 1122–1128. doi:10.1016/j.hrthm.2010.06.010. ISSN 1547-5271.
  5. Cerrone, Marina; Colombi, Barbara; Santoro, Massimo; di Barletta, Marina Raffaele; Scelsi, Mario; Villani, Laura; Napolitano, Carlo; Priori, Silvia G (2005). "Bidirectional Ventricular Tachycardia and Fibrillation Elicited in a Knock-In Mouse Model Carrier of a Mutation in the Cardiac Ryanodine Receptor". Circulation Research. 96 (10). doi:10.1161/01.RES.0000169067.51055.72. ISSN 0009-7330.
  6. Behere, ShashankP; Weindling, StevenN (2016). "Catecholaminergic polymorphic ventricular tachycardia: An exciting new era". Annals of Pediatric Cardiology. 9 (2): 137. doi:10.4103/0974-2069.180645. ISSN 0974-2069.
  7. Leenhardt, Antoine; Denjoy, Isabelle; Guicheney, Pascale (2012). "Catecholaminergic Polymorphic Ventricular Tachycardia". Circulation: Arrhythmia and Electrophysiology. 5 (5): 1044–1052. doi:10.1161/CIRCEP.111.962027. ISSN 1941-3149.

Template:WH Template:WS