Hypoglycemia pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
{{CMG}} {{AE}} {{MAD}}
{{CMG}} {{AE}} {{MAD}}
==Overview==
==Overview==
The pathophysiology of hypoglycemia depends on the failure of physiological defense mechanisms and hormones such as [[insulin]], [[glucagon|glucagon,]] and [[epinephrine]] to correct hypoglycemia. Most of these defense mechanisms are hormones that control [[glycogenolysis]] and [[gluconeogenesis|gluconeogenesis.]] [[Insulinoma]] is a rare benign [[pancreatic neuroendocrine tumor]] that arises from [[Islet cell|β islet cells]]. It is mediated by a mutation in mTOR/P70S6K signaling pathway. An oral mTOR inhibitor ([[Everolimus]]) may make better [[Glycemic control|glycemic control]] in people having an [[insulinoma]]. Non-islet-cell [[tumors]] are large tumors of [[mesenchymal]] or [[Epithelial cells|epithelial cell]] types originate from the [[Pancreas|pancreas.]] NICTH appears to be increased [[glucose]] utilization and inhibition of glucose release from the [[liver]]. This happens as a result of tumor production of incompletely processed [[IGF2|IGF-2]]. On gross pathology insulinomas have a gray to red-brown appearance, encapsulated and are usually small and solitary [[tumors]]. Although there is a case report of a large (9cm), pedunculated and weighing more than 100g. On microscopic histopathological analysis, patterns like trabecular, gyriform, lobular and solid structures, particularly with [[amyloid]] in a fibrovascular [[stroma]], are characteristic findings of [[Insulinoma|insulinoma.]] It is also evaluated for the [[mitotic index]](mitosis per 10 high-power fields) and [[immunohistochemistry]] staining by [[Chromogranin A]], [[synaptophysin]], and [[Ki-67]] index.
The pathophysiology of hypoglycemia depends on the failure of physiological defense mechanisms and [[Hormone|hormones]] such as [[insulin]], [[Glucagon|glucagon,]] and [[epinephrine]] to correct hypoglycemia. Most of these defense mechanisms are hormones that control [[glycogenolysis]] and [[Gluconeogenesis|gluconeogenesis.]] [[Insulinoma]] is a rare benign [[pancreatic neuroendocrine tumor]] that arises from [[Islet cell|β islet cells]]. It is mediated by a mutation in mTOR/P70S6K signaling pathway. Non-islet-cell [[tumors]](NICTH) are large tumors of [[mesenchymal]] or [[Epithelial cells|epithelial cell]] types originate from the [[Pancreas|pancreas.]] NICTH appears to be increased [[glucose]] utilization and inhibition of glucose release from the [[liver]]. This happens as a result of tumor production of incompletely processed [[IGF2|IGF-2]]. On gross pathology [[Insulinoma|insulinomas]] have a gray to red-brown appearance, encapsulated and are usually small and solitary [[tumors]]. Although there is a case report of a large (9cm), pedunculated and weighing more than 100g. On microscopic histopathological analysis, patterns like trabecular, gyriform, lobular and solid structures, particularly with [[amyloid]] in a fibrovascular [[stroma]], are characteristic findings of [[Insulinoma|insulinoma.]] It is also evaluated for the [[mitotic index]] and [[immunohistochemistry]] staining by [[Chromogranin A]], [[synaptophysin]], and [[Ki-67]] index.


== Hypoglycemia pathophysiology ==
== Hypoglycemia pathophysiology ==

Revision as of 14:26, 2 October 2017

Hypoglycemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypoglycemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypoglycemia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hypoglycemia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypoglycemia pathophysiology

CDC on Hypoglycemia pathophysiology

Hypoglycemia pathophysiology in the news

Blogs on Hypoglycemia pathophysiology

Directions to Hospitals Treating Hypoglycemia

Risk calculators and risk factors for Hypoglycemia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Mohammed Abdelwahed M.D[2]

Overview

The pathophysiology of hypoglycemia depends on the failure of physiological defense mechanisms and hormones such as insulinglucagon, and epinephrine to correct hypoglycemia. Most of these defense mechanisms are hormones that control glycogenolysis and gluconeogenesis. Insulinoma is a rare benign pancreatic neuroendocrine tumor that arises from β islet cells. It is mediated by a mutation in mTOR/P70S6K signaling pathway. Non-islet-cell tumors(NICTH) are large tumors of mesenchymal or epithelial cell types originate from the pancreas. NICTH appears to be increased glucose utilization and inhibition of glucose release from the liver. This happens as a result of tumor production of incompletely processed IGF-2. On gross pathology insulinomas have a gray to red-brown appearance, encapsulated and are usually small and solitary tumors. Although there is a case report of a large (9cm), pedunculated and weighing more than 100g. On microscopic histopathological analysis, patterns like trabecular, gyriform, lobular and solid structures, particularly with amyloid in a fibrovascular stroma, are characteristic findings of insulinoma. It is also evaluated for the mitotic index and immunohistochemistry staining by Chromogranin Asynaptophysin, and Ki-67 index.

Hypoglycemia pathophysiology

Physiological effect of insulin

  1. Insulin binds to its receptor which starts many protein activation cascades.
  2. The insulin signal transduction pathway begins when insulin binds to the insulin receptor proteins.
  3. Once the transduction pathway is completed, the GLUT-4 storage vesicles fuse with the cellular membrane.
  4. As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell.[1]
thumb: Insulin cellular effect, source: Wikipedia
thumb: Insulin cellular effect, source: Wikipedia


The actions of insulin on the human metabolism include:[2]

Pathogenesis of hypoglycemia in diabetics

The pathophysiology of hypoglycemia mainly relies on the failure of physiological defense mechanisms and hormones such as insulin, glucagon and epinephrine to correct hypoglycemia. Most of these hormones control glycogenolysis and gluconeogenesis, including:

The most important and the first mechanism to counter-regulate hypoglycemia is the ability to suppress insulin release. This happens early when blood glucose level is between 80–85 mmHg. This cannot occur in patients with absolute beta-cell failure, type 1 diabetes mellitus, and long-standing type 2 diabetes.[3] High insulin levels inhibit hepatic glycogenolysis causing more hypoglycemia.

Hypoglycemia stimulates secretion of glucagon. This happens when blood glucose level falls between 65–70 mmHg. Failure to secrete glucagon may be the result of beta-cell failure and high insulin level that inhibits glucagon secretion.[4]

Epinephrine response to hypoglycemia becomes suppressed in many patients.[5] This happens when blood glucose level falls between 65–70mmHg. A suppressed epinephrine response causes defective glucose counter-regulation and hypoglycemia unawareness occurs.[6] This may be due to shifting the glycemic threshold for the sympathoadrenal response to a lower plasma glucose concentration. The brain is the first organ to be affected by decreased blood glucose level. Impairment of judgment and Seizures may occur resulting in coma.

Pathogenesis of hypoglycemia in insulinoma:

Pathogenesis of hypoglycemia in non-islet-cell tumors hypoglycemia(NICTH):

Genetics

Genes associated with diabetes include the following:[9]

Genetics associated with ([10]) BWS:[10]

Genes associated with autoimmune hypoglycemia include the following:[11]

Gross pathology

Gross pathology of insulinoma, source: By Edward Alabraba et al. - Pancreatic insulinoma co-existing with gastric GIST in the absence of neurofibromatosis-1. World Journal of Surgical Oncology 2009, 7:18doi:10.1186/1477-7819-7-18, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=6686376

Microscopic pathology

Pancreatic insulinoma histopathology, source: CCBY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=507384
Pancreatic insulinoma histopathology, source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=507387
Pancreatic insulinoma histopathology, source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=507388


References

  1. Kuznetsova LA, Plesneva SA, Sharova TS, Pertseva MN, Shpakov AO (2013). "[Regulation of adenylyl cyclase signaling system by insulin, biogenic amines, and glucagon at their separate and combined action in the muscle membranes of the mollusc Anodonta cygnea]". Zh Evol Biokhim Fiziol. 49 (2): 111–7. PMID 23789396.
  2. Ahmad K (2014). "Insulin sources and types: a review of insulin in terms of its mode on diabetes mellitus". J Tradit Chin Med. 34 (2): 234–7. PMID 24783939.
  3. Dunning BE, Gerich JE (2007). "The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications". Endocr Rev. 28 (3): 253–83. doi:10.1210/er.2006-0026. PMID 17409288.
  4. Raju B, Cryer PE (2005). "Loss of the decrement in intraislet insulin plausibly explains loss of the glucagon response to hypoglycemia in insulin-deficient diabetes: documentation of the intraislet insulin hypothesis in humans". Diabetes. 54 (3): 757–64. PMID 15734853.
  5. Dagogo-Jack SE, Craft S, Cryer PE (1993). "Hypoglycemia-associated autonomic failure in insulin-dependent diabetes mellitus. Recent antecedent hypoglycemia reduces autonomic responses to, symptoms of, and defense against subsequent hypoglycemia". J Clin Invest. 91 (3): 819–28. doi:10.1172/JCI116302. PMC 288033. PMID 8450063.
  6. Geddes J, Schopman JE, Zammitt NN, Frier BM (2008). "Prevalence of impaired awareness of hypoglycaemia in adults with Type 1 diabetes". Diabet Med. 25 (4): 501–4. doi:10.1111/j.1464-5491.2008.02413.x. PMID 18387080.
  7. Cryer PE, Axelrod L, Grossman AB, Heller SR, Montori VM, Seaquist ER; et al. (2009). "Evaluation and management of adult hypoglycemic disorders: an Endocrine Society Clinical Practice Guideline". J Clin Endocrinol Metab. 94 (3): 709–28. doi:10.1210/jc.2008-1410. PMID 19088155.
  8. 8.0 8.1 Dynkevich Y, Rother KI, Whitford I, Qureshi S, Galiveeti S, Szulc AL; et al. (2013). "Tumors, IGF-2, and hypoglycemia: insights from the clinic, the laboratory, and the historical archive". Endocr Rev. 34 (6): 798–826. doi:10.1210/er.2012-1033. PMID 23671155.
  9. Pociot F, Lernmark Å (2016). "Genetic risk factors for type 1 diabetes". Lancet. 387 (10035): 2331–9. doi:10.1016/S0140-6736(16)30582-7. PMID 27302272.
  10. 10.0 10.1 Weksberg R, Shuman C, Smith AC (2005). "Beckwith-Wiedemann syndrome". Am J Med Genet C Semin Med Genet. 137C (1): 12–23. doi:10.1002/ajmg.c.30058. PMID 16010676.
  11. Murakami M, Mizuide M, Kashima K, Kojima A, Tomioka SI, Kohama T; et al. (2000). "Identification of monoclonal insulin autoantibodies in insulin autoimmune syndrome associated with HLA-DRB1*0401". Horm Res. 54 (1): 49–52. doi:63437 Check |doi= value (help). PMID 11182636.
  12. Mittendorf EA, Liu YC, McHenry CR (2005). "Giant insulinoma: case report and review of the literature". J Clin Endocrinol Metab. 90 (1): 575–80. doi:10.1210/jc.2004-0825. PMID 15522939.
  13. Okabayashi T, Shima Y, Sumiyoshi T, Kozuki A, Ito S, Ogawa Y; et al. (2013). "Diagnosis and management of insulinoma". World J Gastroenterol. 19 (6): 829–37. doi:10.3748/wjg.v19.i6.829. PMC 3574879. PMID 23430217.
  14. de Herder WW, Niederle B, Scoazec JY, Pauwels S, Kloppel G, Falconi M; et al. (2006). "Well-differentiated pancreatic tumor/carcinoma: insulinoma". Neuroendocrinology. 84 (3): 183–8. doi:10.1159/000098010. PMID 17312378.
  15. Lloyd, Ricardo (2010). Endocrine pathology : differential diagnosis and molecular advances. New York London: Springer. ISBN 978-1441910684.
  16. de Herder, Wouter W.; Niederle, Bruno; Scoazec, Jean-Yves; Pauwels, Stanislas; Klöppel, Günter; Falconi, Massimo; Kwekkeboom, Dik J.; Öberg, Kjel; Eriksson, Barbro; Wiedenmann, Bertram; Rindi, Guido; O’Toole, Dermot; Ferone, Diego (2007). "Well-Differentiated Pancreatic Tumor/Carcinoma: Insulinoma". Neuroendocrinology. 84 (3): 183–188. doi:10.1159/000098010. ISSN 0028-3835.