EPHB3

Jump to: navigation, search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Ephrin type-B receptor 3 is a protein that in humans is encoded by the EPHB3 gene.[1][2]

Function

Ephrin receptors and their ligands, the ephrins, mediate numerous developmental processes, particularly in the nervous system. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. The Eph family of receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. Ephrin receptors make up the largest subgroup of the receptor tyrosine kinase (RTK) family. The protein encoded by this gene is a receptor for ephrin-B family members.[2]

Interactions

EPHB3 has been shown to interact with MLLT4[3] and RAS p21 protein activator 1.[4]

References

  1. Böhme B, Holtrich U, Wolf G, Luzius H, Grzeschik KH, Strebhardt K, Rübsamen-Waigmann H (Oct 1993). "PCR mediated detection of a new human receptor-tyrosine-kinase, HEK 2". Oncogene. 8 (10): 2857–62. PMID 8397371.
  2. 2.0 2.1 "Entrez Gene: EPHB3 EPH receptor B3".
  3. Hock B, Böhme B, Karn T, Yamamoto T, Kaibuchi K, Holtrich U, Holland S, Pawson T, Rübsamen-Waigmann H, Strebhardt K (Aug 1998). "PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor". Proc. Natl. Acad. Sci. U.S.A. 95 (17): 9779–84. doi:10.1073/pnas.95.17.9779. PMC 21413. PMID 9707552.
  4. Hock B, Böhme B, Karn T, Feller S, Rübsamen-Waigmann H, Strebhardt K (Jul 1998). "Tyrosine-614, the major autophosphorylation site of the receptor tyrosine kinase HEK2, functions as multi-docking site for SH2-domain mediated interactions". Oncogene. 17 (2): 255–60. doi:10.1038/sj.onc.1201907. PMID 9674711.

Further reading



Linked-in.jpg