Pulmonary embolism compression ultrasonography

Jump to navigation Jump to search

Pulmonary Embolism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pulmonary Embolism from other Diseases

Epidemiology and Demographics

Risk Factors

Triggers

Natural History, Complications and Prognosis

Diagnosis

Diagnostic criteria

Assessment of Clinical Probability and Risk Scores

Pulmonary Embolism Assessment of Probability of Subsequent VTE and Risk Scores

History and Symptoms

Physical Examination

Laboratory Findings

Arterial Blood Gas Analysis

D-dimer

Biomarkers

Electrocardiogram

Chest X Ray

Ventilation/Perfusion Scan

Echocardiography

Compression Ultrasonography

CT

MRI

Treatment

Treatment approach

Medical Therapy

IVC Filter

Pulmonary Embolectomy

Pulmonary Thromboendarterectomy

Discharge Care and Long Term Treatment

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Follow-Up

Support group

Special Scenario

Pregnancy

Cancer

Trials

Landmark Trials

Case Studies

Case #1

Pulmonary embolism compression ultrasonography On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pulmonary embolism compression ultrasonography

CDC on Pulmonary embolism compression ultrasonography

Pulmonary embolism compression ultrasonography in the news

Blogs on Pulmonary embolism compression ultrasonography

Directions to Hospitals Treating Pulmonary embolism compression ultrasonography

Risk calculators and risk factors for Pulmonary embolism compression ultrasonography

Editor(s)-In-Chief: The APEX Trial Investigators, C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

Overview

Tests that are frequently done that are not sensitive for PE, but can be diagnostic.

  • Compression Ultrasonography of the legs, also known as leg doppler, in search of deep venous thrombosis (DVT). The presence of DVT, as shown on ultrasonography of the legs, is in itself enough to warrant anticoagulation, without requiring the V/Q or spiral CT scans (because of the strong association between DVT and PE). This may be valid approach in pregnancy, in which the other modalities would increase the risk of birth defects in the unborn child. However, a negative scan does not rule out PE, and low-radiation dose scanning may be required if the mother is deemed at high risk of having pulmonary embolism.

References

Template:WH Template:WS