Myasthenia gravis pathophysiology

Revision as of 16:12, 9 July 2013 by Hardik Patel (talk | contribs) (Created page with "__NOTOC__ {{Myasthenia gravis}} {{CMG}} Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing. ==Patho...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Myasthenia gravis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Myasthenia Gravis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Myasthenia gravis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Myasthenia gravis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Myasthenia gravis pathophysiology

CDC on Myasthenia gravis pathophysiology

Myasthenia gravis pathophysiology in the news

Blogs on Myasthenia gravis pathophysiology

Directions to Hospitals Treating Type page name here

Risk calculators and risk factors for Myasthenia gravis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing.

Pathophysiology

Myasthenia gravis is an autoimmune disease, which features antibodies directed against the body's own proteins. While in various similar diseases the disease has been linked to a cross-reaction with an infective agent, there is no known causative pathogen that could account for myasthenia. There is a slight genetic predisposition, particular HLA types seem to predispose for MG (B8 and DR3 with DR1 more specific for ocular myasthenia). Up to 75% of patients have an abnormality of the thymus; 25% have a thymoma, a tumor (either benign or malignant) of the thymus, and other abnormalities are frequently found. The disease process generally remains stationary after thymectomy (removal of the thymus).

In MG, the autoantibodies are directed most commonly against the acetylcholine receptor (nicotinic type), the receptor in the motor end plate for the neurotransmitter acetylcholine that stimulates muscular contraction. Some forms of the antibody impair the ability of acetylcholine to bind to receptors. Others lead to the destruction of receptors, either by complement fixation or by inducing the muscle cell to eliminate the receptors through endocytosis.

The antibodies are produced by plasma cells, that have been derived from B cells. These plasma cells are activated by T-helper cells, which in turn are activated by binding to acetylcholine receptor antigenic peptide sequences (epitopes) that rest within the histocompatibility antigens of antigen presenting cells. The thymus plays an important role in the development of T-cells, which is why myasthenia gravis is associated with thymoma. The exact mechanism is however not convincingly clarified.

In normal muscle contraction, cumulative activation of the ACh receptor leads to influx of sodium and calcium. Only when the levels of these electrolytes inside the muscle cell is high enough will it contract. Decreased numbers of functioning receptors therefore impairs muscular contraction.

It has recently been realized that a second category of gravis is due to auto-antibodies against the MuSK protein (muscle specific kinase), a tyrosine kinase receptor which is required for the formation of the neuromuscular junction. Antibodies against MuSK inhibit the signaling of MuSK normally induced by its nerve-derived ligand, agrin. The result is a decrease in patency of the neuromuscular junction, and the consequent symptoms of MG.

People treated with penicillamine can develop MG symptoms. Their antibody titer is usually similar to that of MG, but both the symptoms and the titer disappear when drug administration is discontinued.

MG is more common in families with other autoimmune diseases. A familial predisposition is found in 5% of the cases. This is associated with certain genetic variations such as an increased frequency of HLA-B8 and DR3. People with MG suffer from co-existing autoimmune diseases at a higher frequency than members of the general population. Of particular mention is co-existing thyroid disease where episodes of hypothyroidism may precipitate a severe exacerbation.

References

Template:WH Template:WS