GPR56: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (→‎top: task, replaced: Pharmacological reviews → Pharmacological Reviews using AWB)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''G protein-coupled receptor 56''' also known as '''TM7XN1''' is a [[protein]] encoded by the ''ADGRG1'' [[gene]].<ref>{{cite journal|last1=Hamann|first1=J|last2=Aust|first2=G|last3=Araç|first3=D|last4=Engel|first4=FB|last5=Formstone|first5=C|last6=Fredriksson|first6=R|last7=Hall|first7=RA|last8=Harty|first8=BL|last9=Kirchhoff|first9=C|last10=Knapp|first10=B|last11=Krishnan|first11=A|last12=Liebscher|first12=I|last13=Lin|first13=HH|last14=Martinelli|first14=DC|last15=Monk|first15=KR|last16=Peeters|first16=MC|last17=Piao|first17=X|last18=Prömel|first18=S|last19=Schöneberg|first19=T|last20=Schwartz|first20=TW|last21=Singer|first21=K|last22=Stacey|first22=M|last23=Ushkaryov|first23=YA|last24=Vallon|first24=M|last25=Wolfrum|first25=U|last26=Wright|first26=MW|last27=Xu|first27=L|last28=Langenhan|first28=T|last29=Schiöth|first29=HB|title=International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors.|journal=Pharmacological Reviews|date=April 2015|volume=67|issue=2|pages=338–67|pmid=25713288|doi=10.1124/pr.114.009647|pmc=4394687}}</ref> GPR56 is a member of the [[adhesion-GPCRs|adhesion GPCR]] family.<ref name="isbn1-4419-7912-3">{{cite book | author = Stacey M, Yona S | title = Adhesion-GPCRs: Structure to Function (Advances in Experimental Medicine and Biology) | publisher = Springer | location = Berlin | year = 2011 | pages = | isbn = 1-4419-7912-3 }}</ref><ref>{{cite journal|last1=Langenhan|first1=T|last2=Aust|first2=G|last3=Hamann|first3=J|title=Sticky signaling--adhesion class G protein-coupled receptors take the stage.|journal=Science signaling|date=21 May 2013|volume=6|issue=276|pages=re3|pmid=23695165|doi=10.1126/scisignal.2003825}}</ref>
| update_page = yes
Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing [[GAIN domain|(GAIN)]] domain.<ref name="pmid22333914">{{cite journal | vauthors = Araç D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Südhof TC, Brunger AT | title = A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis | journal = The EMBO Journal | volume = 31 | issue = 6 | pages = 1364–78 | date = Mar 2012 | pmid = 22333914 | pmc = 3321182 | doi = 10.1038/emboj.2012.26 }}</ref>
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
GPR56 is expressed in liver, muscle, neural, and cytotoxic lymphoid cells in human as well as in hematopoietic precursor, muscle, and developing neural cells in the mouse.<ref>{{cite journal | vauthors = Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R, Hall RA, Harty BL, Kirchhoff C, Knapp B, Krishnan A, Liebscher I, Lin HH, Martinelli DC, Monk KR, Peeters MC, Piao X, Prömel S, Schöneberg T, Schwartz TW, Singer K, Stacey M, Ushkaryov YA, Vallon M, Wolfrum U, Wright MW, Xu L, Langenhan T, Schiöth HB | title = International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors | journal = Pharmacological Reviews | volume = 67 | issue = 2 | pages = 338–67 | date = Apr 2015 | pmid = 25713288 | doi = 10.1124/pr.114.009647 | pmc=4394687}}</ref>
{{GNF_Protein_box
GPR56 has been shown to have numerous role in cell guidance/adhesion as exemplified by its roles in tumour inhibition and neuron development.<ref>{{cite journal | vauthors = Xu L | title = GPR56 interacts with extracellular matrix and regulates cancer progression | journal = Advances in Experimental Medicine and Biology | volume = 706 | pages = 98–108 | year = 2010 | pmid = 21618829 | doi = 10.1007/978-1-4419-7913-1_8 }}</ref><ref>{{cite journal | vauthors = Strokes N, Piao X | title = Adhesion-GPCRs in the CNS | journal = Advances in Experimental Medicine and Biology | volume = 706 | pages = 87–97 | year = 2010 | pmid = 21618828 | doi = 10.1007/978-1-4419-7913-1_7 }}</ref> More recently it has been shown to be a marker for [[cytotoxic T cells]] and  a subgroup of [[Natural killer cells]].<ref>{{cite journal | vauthors = Peng YM, van de Garde MD, Cheng KF, Baars PA, Remmerswaal EB, van Lier RA, Mackay CR, Lin HH, Hamann J | title = Specific expression of GPR56 by human cytotoxic lymphocytes | journal = Journal of Leukocyte Biology | volume = 90 | issue = 4 | pages = 735–40 | date = Oct 2011 | pmid = 21724806 | doi = 10.1189/jlb.0211092 }}</ref>
| image =
| image_source = 
| PDB =
| Name = G protein-coupled receptor 56
| HGNCid = 4512
| Symbol = GPR56
| AltSymbols =; BFPP; DKFZp781L1398; TM7LN4; TM7XN1
| OMIM = 604110
| ECnumber =
| Homologene = 4156
| MGIid = 1340051
| GeneAtlas_image1 = PBB_GE_GPR56_212070_at_tn.png
| GeneAtlas_image2 = PBB_GE_GPR56_206582_s_at_tn.png
| Function = {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0004930 |text = G-protein coupled receptor activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}}  
| Component = {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}} {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0007155 |text = cell adhesion}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007218 |text = neuropeptide signaling pathway}} {{GNF_GO|id=GO:0007267 |text = cell-cell signaling}} {{GNF_GO|id=GO:0007420 |text = brain development}}  
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 9289
    | Hs_Ensembl = ENSG00000205336
    | Hs_RefseqProtein = NP_005673
    | Hs_RefseqmRNA = NM_005682
    | Hs_GenLoc_db =
    | Hs_GenLoc_chr = 16
    | Hs_GenLoc_start = 56241701
    | Hs_GenLoc_end = 56256445
    | Hs_Uniprot = Q9Y653
    | Mm_EntrezGene = 14766
    | Mm_Ensembl = ENSMUSG00000031785
    | Mm_RefseqmRNA = NM_018882
    | Mm_RefseqProtein = NP_061370
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 8
    | Mm_GenLoc_start = 97866238
    | Mm_GenLoc_end = 97903324
    | Mm_Uniprot = Q8K209
  }}
}}
'''G protein-coupled receptor 56''', also known as '''GPR56''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: GPR56 G protein-coupled receptor 56| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9289| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Ligands ==
{{PBB_Summary
| section_title =  
| summary_text =  
}}


==References==
GPR56 binds [[TGM2|transglutaminase 2]] to suppress tumor [[metastasis]]<ref name="ReferenceA">{{cite journal | vauthors = Xu L, Begum S, Hearn JD, Hynes RO | title = GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 24 | pages = 9023–8 | date = Jun 2006 | pmid = 16757564 | doi = 10.1073/pnas.0602681103 | pmc=1474142}}</ref> and binds [[collagen III]] to regulate cortical development and lamination.<ref name="ReferenceB">{{cite journal | vauthors = Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X | title = G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 108 | issue = 31 | pages = 12925–30 | date = Aug 2011 | pmid = 21768377 | doi = 10.1073/pnas.1104821108 | pmc=3150909}}</ref>
{{reflist|2}}
 
==Further reading==
== Signaling ==
{{refbegin | 2}}
 
{{PBB_Further_reading
GPR56 couples to [[Gq alpha subunit|Gα<sub>q/11</sub>]] protein upon association with the [[tetraspanin]]s [[CD9]] and [[CD81]].<ref>{{cite journal | vauthors = Little KD, Hemler ME, Stipp CS | title = Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association | journal = Molecular Biology of the Cell | volume = 15 | issue = 5 | pages = 2375–87 | date = May 2004 | pmid = 15004227 | doi = 10.1091/mbc.E03-12-0886 | pmc=404030}}</ref> Forced GPR56 expression activates [[NF-kB]], [[PAI-1]], and [[TCF7L2|TCF]] transcriptional response elements.<ref name="ReferenceC">{{cite journal | vauthors = Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J, Nikolich K, Urfer R, Foehr ED | title = GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion | journal = Oncogene | volume = 24 | issue = 10 | pages = 1673–82 | date = Mar 2005 | pmid = 15674329 | doi = 10.1038/sj.onc.1208395 }}</ref> The splicing of GPR56 induces tumorigenic responses as a result of activating transcription factors, such as [[COX2]], [[iNOS]], and [[VEGF85]]. GPR56 couples to the [[G12/G13 alpha subunits|Gα12/13]] protein and activates [[RhoA]] and mammalian target of rapamycin ([[mTOR]]) pathway upon ligand binding.<ref name="ReferenceB"/><ref>{{cite journal | vauthors = Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H | title = Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway | journal = The Journal of Biological Chemistry | volume = 283 | issue = 21 | pages = 14469–78 | date = May 2008 | pmid = 18378689 | doi = 10.1074/jbc.M708919200 }}</ref><ref>{{cite journal | vauthors = Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR | title = The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA | journal = Nature Communications | volume = 6 | pages = 6122 | date = 21 January 2015 | pmid = 25607772 | doi = 10.1038/ncomms7122 | pmc=4302765}}</ref><ref>{{cite journal | vauthors = White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS, Martínez-Redondo V, Gygi SP, Ruas JL, Hornberger TA, Wu Z, Glass DJ, Piao X, Spiegelman BM | title = G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 111 | issue = 44 | pages = 15756–61 | date = Nov 2014 | pmid = 25336758 | doi = 10.1073/pnas.1417898111 | pmc=4226111}}</ref> Lack of the [[N-terminal]] fragment (NTF) of GPR56 causes stronger RhoA signaling and β-[[arrestin]] accumulation, leading to extensive [[ubiquitination]] of the [[C-terminal]] fragment (CTF).<ref>{{cite journal | vauthors = Paavola KJ, Stephenson JR, Ritter SL, Alter SP, Hall RA | title = The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity | journal = The Journal of Biological Chemistry | volume = 286 | issue = 33 | pages = 28914–21 | date = Aug 2011 | pmid = 21708946 | doi = 10.1074/jbc.M111.247973 | pmc=3190698}}</ref> Finally, GPR56 suppresses [[PKC alpha|PKCα]] activation to regulate angiogenesis.<ref>{{cite journal | vauthors = Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A, Begum S, Hynes RO, Xu L | title = GPR56 Regulates VEGF production and angiogenesis during [melanoma] progression | journal = Cancer Research | volume = 71 | issue = 16 | pages = 5558–68 | date = Aug 2011 | pmid = 21724588 | doi = 10.1158/0008-5472.CAN-10-4543 | pmc=3156271}}</ref>
| citations =  
 
*{{cite journal  | author=Xu L, Hynes RO |title=GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. |journal=Cell Cycle |volume=6 |issue= 2 |pages= 160-5 |year= 2007 |pmid= 17314516 |doi= }}
== Function ==
*{{cite journal | author=Liu M, Parker RM, Darby K, ''et al.'' |title=GPR56, a novel secretin-like human G-protein-coupled receptor gene. |journal=Genomics |volume=55 |issue= 3 |pages= 296-305 |year= 1999 |pmid= 10049584 |doi= 10.1006/geno.1998.5644 }}
 
*{{cite journal | author=Zendman AJ, Cornelissen IM, Weidle UH, ''et al.'' |title=TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential. |journal=FEBS Lett. |volume=446 |issue= 2-3 |pages= 292-8 |year= 1999 |pmid= 10100861 |doi= }}
Studies in the hematopoietic system disclosed that during endothelial to hematopoietic stem cell transition, Gpr56 is a transcriptional target of the heptad complex of hematopoietic transcription factors, and is required for hematopoietic cluster formation.<ref>{{cite journal | vauthors = Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E, van der Linden R, Marks-Bluth J, van der Sloot A, van den Hout M, Yokomizo T, van Schaick-Solernó ML, Delwel R, Pimanda JE, van IJcken WF, Dzierzak E | title = Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation | journal = The Journal of Experimental Medicine | volume = 212 | issue = 1 | pages = 93–106 | date = Jan 2015 | pmid = 25547674 | doi = 10.1084/jem.20140767 | pmc=4291529}}</ref> Recently, two studies showed that GPR56, is a cell autonomous regulator of oligodendrocyte development through Gα<sub>12/13</sub> proteins and Rho activation.<ref>{{cite journal | vauthors = Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR | title = The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA | journal = Nature Communications | volume = 6 | pages = 6122 | date = 21 January 2015 | pmid = 25607772 | doi = 10.1038/ncomms7122 | pmc=4302765}}</ref><ref>{{cite journal | vauthors = Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Makinodan M, Bialas AR, Chang BS, Stevens B, Corfas G, Piao X | title = The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development | journal = Nature Communications | volume = 6 | pages = 6121 | date = 21 January 2015 | pmid = 25607655 | doi = 10.1038/ncomms7121 | pmc=4302951}}</ref> Della Chiesa et al. demonstrate that GPR56 is expressed on CD56<sup>dull</sup> natural killer (NK) cells.<ref>{{cite journal | vauthors = Della Chiesa M, Falco M, Parolini S, Bellora F, Petretto A, Romeo E, Balsamo M, Gambarotti M, Scordamaglia F, Tabellini G, Facchetti F, Vermi W, Bottino C, Moretta A, Vitale M | title = GPR56 as a novel marker identifying the CD56dull CD16+ NK cell subset both in blood stream and in inflamed peripheral tissues | journal = International Immunology | volume = 22 | issue = 2 | pages = 91–100 | date = Feb 2010 | pmid = 20008459 | doi = 10.1093/intimm/dxp116 }}</ref> Lin and Hamann's group show all human cytotoxic lymphocytes, including CD56<sup>dull</sup> NK cells and CD27<sup>–</sup>CD45RA<sup>+</sup> effector-type CD8<sup>+</sup> T cells, express GPR56.<ref>{{cite journal | vauthors = Peng YM, van de Garde MD, Cheng KF, Baars PA, Remmerswaal EB, van Lier RA, Mackay CR, Lin HH, Hamann J | title = Specific expression of GPR56 by human cytotoxic lymphocytes | journal = Journal of Leukocyte Biology | volume = 90 | issue = 4 | pages = 735–40 | date = Oct 2011 | pmid = 21724806 | doi = 10.1189/jlb.0211092 }}</ref>
*{{cite journal | author=Piao X, Basel-Vanagaite L, Straussberg R, ''et al.'' |title=An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2-21. |journal=Am. J. Hum. Genet. |volume=70 |issue= 4 |pages= 1028-33 |year= 2002 |pmid= 11845408 |doi= }}
 
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
== Clinical significance ==
*{{cite journal | author=Clark HF, Gurney AL, Abaya E, ''et al.'' |title=The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. |journal=Genome Res. |volume=13 |issue= 10 |pages= 2265-70 |year= 2003 |pmid= 12975309 |doi= 10.1101/gr.1293003 }}
 
*{{cite journal | author=Little KD, Hemler ME, Stipp CS |title=Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. |journal=Mol. Biol. Cell |volume=15 |issue= 5 |pages= 2375-87 |year= 2005 |pmid= 15004227 |doi= 10.1091/mbc.E03-12-0886 }}
GPR56 was the first adhesion GPCR causally linked to a disease. Loss-of-function mutations in GPR56 cause a severe cortical malformation known as bilateral frontoparietal polymicrogyria (BFPP).<ref>{{cite journal | vauthors = Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Déscarie JC, Barkovich AJ, Walsh CA | title = G protein-coupled receptor-dependent development of human frontal cortex | journal = Science | volume = 303 | issue = 5666 | pages = 2033–6 | date = Mar 2004 | pmid = 15044805 | doi = 10.1126/science.1092780 }}</ref><ref>{{cite journal | vauthors = Piao X, Chang BS, Bodell A, Woods K, Benzeev B, Topcu M, Guerrini R, Goldberg-Stern H, Sztriha L, Dobyns WB, Barkovich AJ, Walsh CA | title = Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes | journal = Annals of Neurology | volume = 58 | issue = 5 | pages = 680–7 | date = Nov 2005 | pmid = 16240336 | doi = 10.1002/ana.20616 }}</ref><ref>{{cite journal | vauthors = Parrini E, Ferrari AR, Dorn T, Walsh CA, Guerrini R | title = Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations | journal = Epilepsia | volume = 50 | issue = 6 | pages = 1344–53 | date = Jun 2009 | pmid = 19016831 | doi = 10.1111/j.1528-1167.2008.01787.x | pmc=4271835}}</ref><ref>{{cite journal | vauthors = Bahi-Buisson N, Poirier K, Boddaert N, Fallet-Bianco C, Specchio N, Bertini E, Caglayan O, Lascelles K, Elie C, Rambaud J, Baulac M, An I, Dias P, des Portes V, Moutard ML, Soufflet C, El Maleh M, Beldjord C, Villard L, Chelly J | title = GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex | journal = Brain | volume = 133 | issue = 11 | pages = 3194–209 | date = Nov 2010 | pmid = 20929962 | doi = 10.1093/brain/awq259 }}</ref><ref>{{cite journal | vauthors = Luo R, Yang HM, Jin Z, Halley DJ, Chang BS, MacPherson L, Brueton L, Piao X | title = A novel GPR56 mutation causes bilateral frontoparietal polymicrogyria | journal = Pediatric Neurology | volume = 45 | issue = 1 | pages = 49–53 | date = Jul 2011 | pmid = 21723461 | doi = 10.1016/j.pediatrneurol.2011.02.004 | pmc=3135102}}</ref><ref>{{cite journal | vauthors = Quattrocchi CC, Zanni G, Napolitano A, Longo D, Cordelli DM, Barresi S, Randisi F, Valente EM, Verdolotti T, Genovese E, Specchio N, Vitiello G, Spiegel R, Bertini E, Bernardi B | title = Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype | journal = Neurogenetics | volume = 14 | issue = 1 | pages = 77–83 | date = Feb 2013 | pmid = 23274687 | doi = 10.1007/s10048-012-0352-7 }}</ref><ref>{{cite journal | vauthors = Santos-Silva R, Passas A, Rocha C, Figueiredo R, Mendes-Ribeiro J, Fernandes S, Biskup S, Leão M | title = Bilateral Frontoparietal Polymicrogyria: A Novel GPR56 Mutation and an Unusual Phenotype | journal = Neuropediatrics | volume = 46 | issue = 2 | pages = 134–8 | date = Apr 2015 | pmid = 25642806 | doi = 10.1055/s-0034-1399754 }}</ref> Investigating the pathological mechanism of disease-associated ''GPR56'' mutations in BFPP has provided mechanistic insights into the functioning of adhesion GPCRs. Researchers demonstrated that disease-associated ''GPR56'' mutations cause BFPP via multiple mechanisms.<ref>{{cite journal | vauthors = Jin Z, Tietjen I, Bu L, Liu-Yesucevitz L, Gaur SK, Walsh CA, Piao X | title = Disease-associated mutations affect GPR56 protein trafficking and cell surface expression | journal = Human Molecular Genetics | volume = 16 | issue = 16 | pages = 1972–85 | date = Aug 2007 | pmid = 17576745 | doi = 10.1093/hmg/ddm144 }}</ref><ref>{{cite journal | vauthors = Ke N, Ma H, Diedrich G, Chionis J, Liu G, Yu DH, Wong-Staal F, Li QX | title = Biochemical characterization of genetic mutations of GPR56 in patients with bilateral frontoparietal polymicrogyria (BFPP) | journal = Biochemical and Biophysical Research Communications | volume = 366 | issue = 2 | pages = 314–20 | date = Feb 2008 | pmid = 18042463 | doi = 10.1016/j.bbrc.2007.11.071 }}</ref><ref>{{cite journal | vauthors = Chiang NY, Hsiao CC, Huang YS, Chen HY, Hsieh IJ, Chang GW, Lin HH | title = Disease-associated GPR56 mutations cause bilateral frontoparietal polymicrogyria via multiple mechanisms | journal = The Journal of Biological Chemistry | volume = 286 | issue = 16 | pages = 14215–25 | date = Apr 2011 | pmid = 21349848 | doi = 10.1074/jbc.M110.183830 | pmc=3077623}}</ref><ref>{{cite journal | vauthors = Luo R, Jin Z, Deng Y, Strokes N, Piao X | title = Disease-associated mutations prevent GPR56-collagen III interaction | journal = PLOS ONE | volume = 7 | issue = 1 | pages = e29818 | date = 2012 | pmid = 22238662 | doi = 10.1371/journal.pone.0029818 | pmc=3251603}}</ref> Li et al. demonstrated that GPR56 regulates pial basement membrane (BM) organization during cortical development. Disruption of the ''Gpr56'' gene in mice leads to neuronal malformation in the cerebral cortex, which resulted in 4 critical pathological morphologies: defective pial BM, abnormal localized radial glial endfeet, malpositioned Cajal-Retzius cells, and overmigrated neurons.<ref>{{cite journal | vauthors = Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO, Walsh CA, Corfas G, Piao X | title = GPR56 regulates pial basement membrane integrity and cortical lamination | journal = The Journal of Neuroscience | volume = 28 | issue = 22 | pages = 5817–26 | date = May 2008 | pmid = 18509043 | doi = 10.1523/JNEUROSCI.0853-08.2008 | pmc=2504715}}</ref> Furthermore, the interaction of GPR56 and collagen III inhibits neural migration to regulate lamination of the cerebral cortex.<ref name="ReferenceB"/> Next to GPR56, the α3β1 integrin is also involved in pial BM maintenance. Study from ''Itga3'' (α3 integrin)/''Gpr56'' double knockout mice showed increased neuronal overmigration compared to ''Gpr56'' single knockout mice, indicating cooperation of GPR56 and α3β1 integrin in modulation of the development of the cerebral cortex.<ref>{{cite journal | vauthors = Jeong SJ, Luo R, Singer K, Giera S, Kreidberg J, Kiyozumi D, Shimono C, Sekiguchi K, Piao X | title = GPR56 functions together with α3β1 integrin in regulating cerebral cortical development | journal = PLOS ONE | volume = 8 | issue = 7 | pages = e68781 | date = 2013 | pmid = 23874761 | doi = 10.1371/journal.pone.0068781 | pmc=3706371}}</ref> More recently, the Walsh laboratory showed that alternative splicing of GPR56 regulates regional cerebral cortical patterning.<ref>{{cite journal | vauthors = Bae BI, Tietjen I, Atabay KD, Evrony GD, Johnson MB, Asare E, Wang PP, Murayama AY, Im K, Lisgo SN, Overman L, Šestan N, Chang BS, Barkovich AJ, Grant PE, Topçu M, Politsky J, Okano H, Piao X, Walsh CA | title = Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning | journal = Science | volume = 343 | issue = 6172 | pages = 764–8 | date = Feb 2014 | pmid = 24531968 | doi = 10.1126/science.1244392 | pmc=4480613}}</ref>
*{{cite journal | author=Piao X, Hill RS, Bodell A, ''et al.'' |title=G protein-coupled receptor-dependent development of human frontal cortex. |journal=Science |volume=303 |issue= 5666 |pages= 2033-6 |year= 2004 |pmid= 15044805 |doi= 10.1126/science.1092780 }}
 
*{{cite journal | author=Zhang Z, Henzel WJ |title=Signal peptide prediction based on analysis of experimentally verified cleavage sites. |journal=Protein Sci. |volume=13 |issue= 10 |pages= 2819-24 |year= 2005 |pmid= 15340161 |doi= 10.1110/ps.04682504 }}
Outside the nervous system, GPR56 has been linked to muscle function and male fertility. The expression of GPR56 is upregulated during early differentiation of human myoblasts. Investigation of Gpr56 knockout mice and BFPP patients showed that GPR56 is required for in vitro myoblast fusion via signaling of serum response factor (SRF) and nuclear factor of activated T-cell (NFAT), but is not essential for muscle development in vivo.<ref>{{cite journal | vauthors = Wu MP, Doyle JR, Barry B, Beauvais A, Rozkalne A, Piao X, Lawlor MW, Kopin AS, Walsh CA, Gussoni E | title = G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo | journal = The FEBS Journal | volume = 280 | issue = 23 | pages = 6097–113 | date = Dec 2013 | pmid = 24102982 | doi = 10.1111/febs.12529 | pmc=3877849}}</ref> Additionally, GPR56 is a transcriptional target of peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 and regulates overload-induced muscle hypertrophy through Gα<sub>12/13</sub> and mTOR signaling.<ref>{{cite journal | vauthors = White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS, Martínez-Redondo V, Gygi SP, Ruas JL, Hornberger TA, Wu Z, Glass DJ, Piao X, Spiegelman BM | title = G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 111 | issue = 44 | pages = 15756–61 | date = Nov 2014 | pmid = 25336758 | doi = 10.1073/pnas.1417898111 | pmc=4226111}}</ref> Therefore, the study of knockout mice revealed that GPR56 is involved in testis development and male fertility.<ref>{{cite journal | vauthors = Chen G, Yang L, Begum S, Xu L | title = GPR56 is essential for testis development and male fertility in mice | journal = Developmental Dynamics | volume = 239 | issue = 12 | pages = 3358–67 | date = Dec 2010 | pmid = 20981830 | doi = 10.1002/dvdy.22468 | pmc=2991479}}</ref> In melanocytic cells GPR56 gene expression may be regulated by [[Microphthalmia-associated transcription factor|MITF]].<ref name="pmid19067971">{{cite journal | vauthors = Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E | title = Novel MITF targets identified using a two-step DNA microarray strategy | journal = Pigment Cell & Melanoma Research | volume = 21 | issue = 6 | pages = 665–76 | date = Dec 2008 | pmid = 19067971 | doi = 10.1111/j.1755-148X.2008.00505.x }}</ref>
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
 
*{{cite journal | author=Shashidhar S, Lorente G, Nagavarapu U, ''et al.'' |title=GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. |journal=Oncogene |volume=24 |issue= 10 |pages= 1673-82 |year= 2005 |pmid= 15674329 |doi= 10.1038/sj.onc.1208395 }}
Mutations in GPR56 cause the brain developmental disorder BFPP, characterized by disordered cortical lamination in frontal cortex.<ref>{{cite journal | vauthors = Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Déscarie JC, Barkovich AJ, Walsh CA | title = G protein-coupled receptor-dependent development of human frontal cortex | journal = Science | volume = 303 | issue = 5666 | pages = 2033–6 | date = Mar 2004 | pmid = 15044805 | doi = 10.1126/science.1092780 }}</ref> Mice lacking expression of GPR56 develop a comparable phenotype.<ref>{{cite journal | vauthors = Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO, Walsh CA, Corfas G, Piao X | title = GPR56 regulates pial basement membrane integrity and cortical lamination | journal = The Journal of Neuroscience | volume = 28 | issue = 22 | pages = 5817–26 | date = May 2008 | pmid = 18509043 | doi = 10.1523/JNEUROSCI.0853-08.2008 | pmc=2504715}}</ref> Furthermore, loss of GPR56 leads to reduced fertility in male mice, resulting from a defect in seminiferous tubule development.<ref>{{cite journal | vauthors = Chen G, Yang L, Begum S, Xu L | title = GPR56 is essential for testis development and male fertility in mice | journal = Developmental Dynamics | volume = 239 | issue = 12 | pages = 3358–67 | date = Dec 2010 | pmid = 20981830 | doi = 10.1002/dvdy.22468 | pmc=2991479}}</ref> GPR56 is expressed in glioblastoma/astrocytoma<ref name="ReferenceC"/> as well as in esophageal squamous cell,<ref>{{cite journal | vauthors = Sud N, Sharma R, Ray R, Chattopadhyay TK, Ralhan R | title = Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma | journal = Cancer Letters | volume = 233 | issue = 2 | pages = 265–70 | date = Feb 2006 | pmid = 15916848 | doi = 10.1016/j.canlet.2005.03.018 }}</ref> breast, colon, non-small cell lung, ovarian, and pancreatic carcinoma.<ref>{{cite journal | vauthors = Ke N, Sundaram R, Liu G, Chionis J, Fan W, Rogers C, Awad T, Grifman M, Yu D, Wong-Staal F, Li QX | title = Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway | journal = Molecular Cancer Therapeutics | volume = 6 | issue = 6 | pages = 1840–50 | date = Jun 2007 | pmid = 17575113 | doi = 10.1158/1535-7163.MCT-07-0066 }}</ref> GPR56 was shown to localize together with α-actinin at the leading edge of membrane filopodia in glioblastoma cells, suggesting a role in cell adhesion/migration.<ref name="ReferenceC"/> In addition, recombinant GPR56-NTF protein interacts with glioma cells to inhibit cellular adhesion. Inactivation of Von Hippel-Lindau (VHL) tumor-suppressor gene and hypoxia suppressed GPR56 in a renal cell carcinoma cell line, but hypoxia influenced GPR56 expression in breast or bladder cancer cell lines.<ref>{{cite journal | vauthors = Maina EN, Morris MR, Zatyka M, Raval RR, Banks RE, Richards FM, Johnson CM, Maher ER | title = Identification of novel VHL target genes and relationship to hypoxic response pathways | journal = Oncogene | volume = 24 | issue = 28 | pages = 4549–58 | date = Jun 2005 | pmid = 15824735 | doi = 10.1038/sj.onc.1208649 }}</ref> GPR56 is a target gene for vezatin, an adherens junctions transmembrane protein, which is a tumor suppressor in gastric cancer.<ref>{{cite journal | vauthors = Miao R, Guo X, Zhi Q, Shi Y, Li L, Mao X, Zhang L, Li C | title = VEZT, a novel putative tumor suppressor, suppresses the growth and tumorigenicity of gastric cancer | journal = PLOS ONE | volume = 8 | issue = 9 | pages = e74409 | date = 2013 | pmid = 24069310 | doi = 10.1371/journal.pone.0074409 | pmc=3775783}}</ref> Xu et al. used an in vivo metastatic model of human melanoma to show that GPR56 is downregulated in highly metastatic cells.<ref name="ReferenceA"/> Later, by ectopic expression and RNA interference they confirmed that GPR56 inhibits melanoma tumor growth and metastasis. Silenced expression of GPR56 in HeLa cells enhanced apoptosis and anoikis, but suppressed anchorage-independent growth and cell adhesion.<ref>{{cite journal | vauthors = Ke N, Sundaram R, Liu G, Chionis J, Fan W, Rogers C, Awad T, Grifman M, Yu D, Wong-Staal F, Li QX | title = Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway | journal = Molecular Cancer Therapeutics | volume = 6 | issue = 6 | pages = 1840–50 | date = Jun 2007 | pmid = 17575113 | doi = 10.1158/1535-7163.MCT-07-0066 }}</ref> High ecotropic viral integration site-1 acute myeloid leukemia (EVI1-high AML) expresses GPR56 that was found to be a transcriptional target of EVI1.<ref>{{cite journal | vauthors = Saito Y, Kaneda K, Suekane A, Ichihara E, Nakahata S, Yamakawa N, Nagai K, Mizuno N, Kogawa K, Miura I, Itoh H, Morishita K | title = Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56 | journal = Leukemia | volume = 27 | issue = 8 | pages = 1637–49 | date = Aug 2013 | pmid = 23478665 | doi = 10.1038/leu.2013.75 }}</ref> Silencing expression of GPR56 decreases adhesion, cell growth and induces apoptosis through reduced RhoA signaling. GPR56 suppresses the angiogenesis and melanoma growth through inhibition of vascular endothelial growth factor (VEGF) via PKCα signaling pathway.<ref>{{cite journal | vauthors = Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A, Begum S, Hynes RO, Xu L | title = GPR56 Regulates VEGF production and angiogenesis during melanoma progression | journal = Cancer Research | volume = 71 | issue = 16 | pages = 5558–68 | date = Aug 2011 | pmid = 21724588 | doi = 10.1158/0008-5472.CAN-10-4543 | pmc=3156271}}</ref> Furthermore, GPR56 expression was found to be negatively correlated with the malignancy of melanomas in human patients.
*{{cite journal | author=Sud N, Sharma R, Ray R, ''et al.'' |title=Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma. |journal=Cancer Lett. |volume=233 |issue= 2 |pages= 265-70 |year= 2006 |pmid= 15916848 |doi= 10.1016/j.canlet.2005.03.018 }}
 
*{{cite journal | author=Otsuki T, Ota T, Nishikawa T, ''et al.'' |title=Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. |journal=DNA Res. |volume=12 |issue= 2 |pages= 117-26 |year= 2007 |pmid= 16303743 |doi= 10.1093/dnares/12.2.117 }}
== References ==
*{{cite journal | author=Xu L, Begum S, Hearn JD, Hynes RO |title=GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 24 |pages= 9023-8 |year= 2006 |pmid= 16757564 |doi= 10.1073/pnas.0602681103 }}
{{Reflist|35em}}
}}
 
{{refend}}
== External links ==
* [http://www.adhesiongpcr.org/ Adhesion GPCR consortium]
* [https://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=poly  GeneReviews/NIH/NCBI/UW entry on Polymicrogyria Overview]


{{membrane-protein-stub}}
{{NLM content}}
{{G protein-coupled receptors}}
{{G protein-coupled receptors}}
{{DEFAULTSORT:Gpr56}}
[[Category:G protein coupled receptors]]
[[Category:G protein coupled receptors]]
{{WikiDoc Sources}}

Revision as of 21:55, 14 November 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

G protein-coupled receptor 56 also known as TM7XN1 is a protein encoded by the ADGRG1 gene.[1] GPR56 is a member of the adhesion GPCR family.[2][3] Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.[4]

GPR56 is expressed in liver, muscle, neural, and cytotoxic lymphoid cells in human as well as in hematopoietic precursor, muscle, and developing neural cells in the mouse.[5] GPR56 has been shown to have numerous role in cell guidance/adhesion as exemplified by its roles in tumour inhibition and neuron development.[6][7] More recently it has been shown to be a marker for cytotoxic T cells and a subgroup of Natural killer cells.[8]

Ligands

GPR56 binds transglutaminase 2 to suppress tumor metastasis[9] and binds collagen III to regulate cortical development and lamination.[10]

Signaling

GPR56 couples to q/11 protein upon association with the tetraspanins CD9 and CD81.[11] Forced GPR56 expression activates NF-kB, PAI-1, and TCF transcriptional response elements.[12] The splicing of GPR56 induces tumorigenic responses as a result of activating transcription factors, such as COX2, iNOS, and VEGF85. GPR56 couples to the Gα12/13 protein and activates RhoA and mammalian target of rapamycin (mTOR) pathway upon ligand binding.[10][13][14][15] Lack of the N-terminal fragment (NTF) of GPR56 causes stronger RhoA signaling and β-arrestin accumulation, leading to extensive ubiquitination of the C-terminal fragment (CTF).[16] Finally, GPR56 suppresses PKCα activation to regulate angiogenesis.[17]

Function

Studies in the hematopoietic system disclosed that during endothelial to hematopoietic stem cell transition, Gpr56 is a transcriptional target of the heptad complex of hematopoietic transcription factors, and is required for hematopoietic cluster formation.[18] Recently, two studies showed that GPR56, is a cell autonomous regulator of oligodendrocyte development through Gα12/13 proteins and Rho activation.[19][20] Della Chiesa et al. demonstrate that GPR56 is expressed on CD56dull natural killer (NK) cells.[21] Lin and Hamann's group show all human cytotoxic lymphocytes, including CD56dull NK cells and CD27CD45RA+ effector-type CD8+ T cells, express GPR56.[22]

Clinical significance

GPR56 was the first adhesion GPCR causally linked to a disease. Loss-of-function mutations in GPR56 cause a severe cortical malformation known as bilateral frontoparietal polymicrogyria (BFPP).[23][24][25][26][27][28][29] Investigating the pathological mechanism of disease-associated GPR56 mutations in BFPP has provided mechanistic insights into the functioning of adhesion GPCRs. Researchers demonstrated that disease-associated GPR56 mutations cause BFPP via multiple mechanisms.[30][31][32][33] Li et al. demonstrated that GPR56 regulates pial basement membrane (BM) organization during cortical development. Disruption of the Gpr56 gene in mice leads to neuronal malformation in the cerebral cortex, which resulted in 4 critical pathological morphologies: defective pial BM, abnormal localized radial glial endfeet, malpositioned Cajal-Retzius cells, and overmigrated neurons.[34] Furthermore, the interaction of GPR56 and collagen III inhibits neural migration to regulate lamination of the cerebral cortex.[10] Next to GPR56, the α3β1 integrin is also involved in pial BM maintenance. Study from Itga3 (α3 integrin)/Gpr56 double knockout mice showed increased neuronal overmigration compared to Gpr56 single knockout mice, indicating cooperation of GPR56 and α3β1 integrin in modulation of the development of the cerebral cortex.[35] More recently, the Walsh laboratory showed that alternative splicing of GPR56 regulates regional cerebral cortical patterning.[36]

Outside the nervous system, GPR56 has been linked to muscle function and male fertility. The expression of GPR56 is upregulated during early differentiation of human myoblasts. Investigation of Gpr56 knockout mice and BFPP patients showed that GPR56 is required for in vitro myoblast fusion via signaling of serum response factor (SRF) and nuclear factor of activated T-cell (NFAT), but is not essential for muscle development in vivo.[37] Additionally, GPR56 is a transcriptional target of peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 and regulates overload-induced muscle hypertrophy through Gα12/13 and mTOR signaling.[38] Therefore, the study of knockout mice revealed that GPR56 is involved in testis development and male fertility.[39] In melanocytic cells GPR56 gene expression may be regulated by MITF.[40]

Mutations in GPR56 cause the brain developmental disorder BFPP, characterized by disordered cortical lamination in frontal cortex.[41] Mice lacking expression of GPR56 develop a comparable phenotype.[42] Furthermore, loss of GPR56 leads to reduced fertility in male mice, resulting from a defect in seminiferous tubule development.[43] GPR56 is expressed in glioblastoma/astrocytoma[12] as well as in esophageal squamous cell,[44] breast, colon, non-small cell lung, ovarian, and pancreatic carcinoma.[45] GPR56 was shown to localize together with α-actinin at the leading edge of membrane filopodia in glioblastoma cells, suggesting a role in cell adhesion/migration.[12] In addition, recombinant GPR56-NTF protein interacts with glioma cells to inhibit cellular adhesion. Inactivation of Von Hippel-Lindau (VHL) tumor-suppressor gene and hypoxia suppressed GPR56 in a renal cell carcinoma cell line, but hypoxia influenced GPR56 expression in breast or bladder cancer cell lines.[46] GPR56 is a target gene for vezatin, an adherens junctions transmembrane protein, which is a tumor suppressor in gastric cancer.[47] Xu et al. used an in vivo metastatic model of human melanoma to show that GPR56 is downregulated in highly metastatic cells.[9] Later, by ectopic expression and RNA interference they confirmed that GPR56 inhibits melanoma tumor growth and metastasis. Silenced expression of GPR56 in HeLa cells enhanced apoptosis and anoikis, but suppressed anchorage-independent growth and cell adhesion.[48] High ecotropic viral integration site-1 acute myeloid leukemia (EVI1-high AML) expresses GPR56 that was found to be a transcriptional target of EVI1.[49] Silencing expression of GPR56 decreases adhesion, cell growth and induces apoptosis through reduced RhoA signaling. GPR56 suppresses the angiogenesis and melanoma growth through inhibition of vascular endothelial growth factor (VEGF) via PKCα signaling pathway.[50] Furthermore, GPR56 expression was found to be negatively correlated with the malignancy of melanomas in human patients.

References

  1. Hamann, J; Aust, G; Araç, D; Engel, FB; Formstone, C; Fredriksson, R; Hall, RA; Harty, BL; Kirchhoff, C; Knapp, B; Krishnan, A; Liebscher, I; Lin, HH; Martinelli, DC; Monk, KR; Peeters, MC; Piao, X; Prömel, S; Schöneberg, T; Schwartz, TW; Singer, K; Stacey, M; Ushkaryov, YA; Vallon, M; Wolfrum, U; Wright, MW; Xu, L; Langenhan, T; Schiöth, HB (April 2015). "International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors". Pharmacological Reviews. 67 (2): 338–67. doi:10.1124/pr.114.009647. PMC 4394687. PMID 25713288.
  2. Stacey M, Yona S (2011). Adhesion-GPCRs: Structure to Function (Advances in Experimental Medicine and Biology). Berlin: Springer. ISBN 1-4419-7912-3.
  3. Langenhan, T; Aust, G; Hamann, J (21 May 2013). "Sticky signaling--adhesion class G protein-coupled receptors take the stage". Science signaling. 6 (276): re3. doi:10.1126/scisignal.2003825. PMID 23695165.
  4. Araç D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Südhof TC, Brunger AT (Mar 2012). "A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis". The EMBO Journal. 31 (6): 1364–78. doi:10.1038/emboj.2012.26. PMC 3321182. PMID 22333914.
  5. Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R, Hall RA, Harty BL, Kirchhoff C, Knapp B, Krishnan A, Liebscher I, Lin HH, Martinelli DC, Monk KR, Peeters MC, Piao X, Prömel S, Schöneberg T, Schwartz TW, Singer K, Stacey M, Ushkaryov YA, Vallon M, Wolfrum U, Wright MW, Xu L, Langenhan T, Schiöth HB (Apr 2015). "International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors". Pharmacological Reviews. 67 (2): 338–67. doi:10.1124/pr.114.009647. PMC 4394687. PMID 25713288.
  6. Xu L (2010). "GPR56 interacts with extracellular matrix and regulates cancer progression". Advances in Experimental Medicine and Biology. 706: 98–108. doi:10.1007/978-1-4419-7913-1_8. PMID 21618829.
  7. Strokes N, Piao X (2010). "Adhesion-GPCRs in the CNS". Advances in Experimental Medicine and Biology. 706: 87–97. doi:10.1007/978-1-4419-7913-1_7. PMID 21618828.
  8. Peng YM, van de Garde MD, Cheng KF, Baars PA, Remmerswaal EB, van Lier RA, Mackay CR, Lin HH, Hamann J (Oct 2011). "Specific expression of GPR56 by human cytotoxic lymphocytes". Journal of Leukocyte Biology. 90 (4): 735–40. doi:10.1189/jlb.0211092. PMID 21724806.
  9. 9.0 9.1 Xu L, Begum S, Hearn JD, Hynes RO (Jun 2006). "GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis". Proceedings of the National Academy of Sciences of the United States of America. 103 (24): 9023–8. doi:10.1073/pnas.0602681103. PMC 1474142. PMID 16757564.
  10. 10.0 10.1 10.2 Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X (Aug 2011). "G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination". Proceedings of the National Academy of Sciences of the United States of America. 108 (31): 12925–30. doi:10.1073/pnas.1104821108. PMC 3150909. PMID 21768377.
  11. Little KD, Hemler ME, Stipp CS (May 2004). "Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association". Molecular Biology of the Cell. 15 (5): 2375–87. doi:10.1091/mbc.E03-12-0886. PMC 404030. PMID 15004227.
  12. 12.0 12.1 12.2 Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J, Nikolich K, Urfer R, Foehr ED (Mar 2005). "GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion". Oncogene. 24 (10): 1673–82. doi:10.1038/sj.onc.1208395. PMID 15674329.
  13. Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H (May 2008). "Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway". The Journal of Biological Chemistry. 283 (21): 14469–78. doi:10.1074/jbc.M708919200. PMID 18378689.
  14. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (21 January 2015). "The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA". Nature Communications. 6: 6122. doi:10.1038/ncomms7122. PMC 4302765. PMID 25607772.
  15. White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS, Martínez-Redondo V, Gygi SP, Ruas JL, Hornberger TA, Wu Z, Glass DJ, Piao X, Spiegelman BM (Nov 2014). "G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy". Proceedings of the National Academy of Sciences of the United States of America. 111 (44): 15756–61. doi:10.1073/pnas.1417898111. PMC 4226111. PMID 25336758.
  16. Paavola KJ, Stephenson JR, Ritter SL, Alter SP, Hall RA (Aug 2011). "The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity". The Journal of Biological Chemistry. 286 (33): 28914–21. doi:10.1074/jbc.M111.247973. PMC 3190698. PMID 21708946.
  17. Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A, Begum S, Hynes RO, Xu L (Aug 2011). "GPR56 Regulates VEGF production and angiogenesis during [melanoma] progression". Cancer Research. 71 (16): 5558–68. doi:10.1158/0008-5472.CAN-10-4543. PMC 3156271. PMID 21724588.
  18. Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E, van der Linden R, Marks-Bluth J, van der Sloot A, van den Hout M, Yokomizo T, van Schaick-Solernó ML, Delwel R, Pimanda JE, van IJcken WF, Dzierzak E (Jan 2015). "Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation". The Journal of Experimental Medicine. 212 (1): 93–106. doi:10.1084/jem.20140767. PMC 4291529. PMID 25547674.
  19. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (21 January 2015). "The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA". Nature Communications. 6: 6122. doi:10.1038/ncomms7122. PMC 4302765. PMID 25607772.
  20. Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Makinodan M, Bialas AR, Chang BS, Stevens B, Corfas G, Piao X (21 January 2015). "The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development". Nature Communications. 6: 6121. doi:10.1038/ncomms7121. PMC 4302951. PMID 25607655.
  21. Della Chiesa M, Falco M, Parolini S, Bellora F, Petretto A, Romeo E, Balsamo M, Gambarotti M, Scordamaglia F, Tabellini G, Facchetti F, Vermi W, Bottino C, Moretta A, Vitale M (Feb 2010). "GPR56 as a novel marker identifying the CD56dull CD16+ NK cell subset both in blood stream and in inflamed peripheral tissues". International Immunology. 22 (2): 91–100. doi:10.1093/intimm/dxp116. PMID 20008459.
  22. Peng YM, van de Garde MD, Cheng KF, Baars PA, Remmerswaal EB, van Lier RA, Mackay CR, Lin HH, Hamann J (Oct 2011). "Specific expression of GPR56 by human cytotoxic lymphocytes". Journal of Leukocyte Biology. 90 (4): 735–40. doi:10.1189/jlb.0211092. PMID 21724806.
  23. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Déscarie JC, Barkovich AJ, Walsh CA (Mar 2004). "G protein-coupled receptor-dependent development of human frontal cortex". Science. 303 (5666): 2033–6. doi:10.1126/science.1092780. PMID 15044805.
  24. Piao X, Chang BS, Bodell A, Woods K, Benzeev B, Topcu M, Guerrini R, Goldberg-Stern H, Sztriha L, Dobyns WB, Barkovich AJ, Walsh CA (Nov 2005). "Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes". Annals of Neurology. 58 (5): 680–7. doi:10.1002/ana.20616. PMID 16240336.
  25. Parrini E, Ferrari AR, Dorn T, Walsh CA, Guerrini R (Jun 2009). "Bilateral frontoparietal polymicrogyria, Lennox-Gastaut syndrome, and GPR56 gene mutations". Epilepsia. 50 (6): 1344–53. doi:10.1111/j.1528-1167.2008.01787.x. PMC 4271835. PMID 19016831.
  26. Bahi-Buisson N, Poirier K, Boddaert N, Fallet-Bianco C, Specchio N, Bertini E, Caglayan O, Lascelles K, Elie C, Rambaud J, Baulac M, An I, Dias P, des Portes V, Moutard ML, Soufflet C, El Maleh M, Beldjord C, Villard L, Chelly J (Nov 2010). "GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex". Brain. 133 (11): 3194–209. doi:10.1093/brain/awq259. PMID 20929962.
  27. Luo R, Yang HM, Jin Z, Halley DJ, Chang BS, MacPherson L, Brueton L, Piao X (Jul 2011). "A novel GPR56 mutation causes bilateral frontoparietal polymicrogyria". Pediatric Neurology. 45 (1): 49–53. doi:10.1016/j.pediatrneurol.2011.02.004. PMC 3135102. PMID 21723461.
  28. Quattrocchi CC, Zanni G, Napolitano A, Longo D, Cordelli DM, Barresi S, Randisi F, Valente EM, Verdolotti T, Genovese E, Specchio N, Vitiello G, Spiegel R, Bertini E, Bernardi B (Feb 2013). "Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype". Neurogenetics. 14 (1): 77–83. doi:10.1007/s10048-012-0352-7. PMID 23274687.
  29. Santos-Silva R, Passas A, Rocha C, Figueiredo R, Mendes-Ribeiro J, Fernandes S, Biskup S, Leão M (Apr 2015). "Bilateral Frontoparietal Polymicrogyria: A Novel GPR56 Mutation and an Unusual Phenotype". Neuropediatrics. 46 (2): 134–8. doi:10.1055/s-0034-1399754. PMID 25642806.
  30. Jin Z, Tietjen I, Bu L, Liu-Yesucevitz L, Gaur SK, Walsh CA, Piao X (Aug 2007). "Disease-associated mutations affect GPR56 protein trafficking and cell surface expression". Human Molecular Genetics. 16 (16): 1972–85. doi:10.1093/hmg/ddm144. PMID 17576745.
  31. Ke N, Ma H, Diedrich G, Chionis J, Liu G, Yu DH, Wong-Staal F, Li QX (Feb 2008). "Biochemical characterization of genetic mutations of GPR56 in patients with bilateral frontoparietal polymicrogyria (BFPP)". Biochemical and Biophysical Research Communications. 366 (2): 314–20. doi:10.1016/j.bbrc.2007.11.071. PMID 18042463.
  32. Chiang NY, Hsiao CC, Huang YS, Chen HY, Hsieh IJ, Chang GW, Lin HH (Apr 2011). "Disease-associated GPR56 mutations cause bilateral frontoparietal polymicrogyria via multiple mechanisms". The Journal of Biological Chemistry. 286 (16): 14215–25. doi:10.1074/jbc.M110.183830. PMC 3077623. PMID 21349848.
  33. Luo R, Jin Z, Deng Y, Strokes N, Piao X (2012). "Disease-associated mutations prevent GPR56-collagen III interaction". PLOS ONE. 7 (1): e29818. doi:10.1371/journal.pone.0029818. PMC 3251603. PMID 22238662.
  34. Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO, Walsh CA, Corfas G, Piao X (May 2008). "GPR56 regulates pial basement membrane integrity and cortical lamination". The Journal of Neuroscience. 28 (22): 5817–26. doi:10.1523/JNEUROSCI.0853-08.2008. PMC 2504715. PMID 18509043.
  35. Jeong SJ, Luo R, Singer K, Giera S, Kreidberg J, Kiyozumi D, Shimono C, Sekiguchi K, Piao X (2013). "GPR56 functions together with α3β1 integrin in regulating cerebral cortical development". PLOS ONE. 8 (7): e68781. doi:10.1371/journal.pone.0068781. PMC 3706371. PMID 23874761.
  36. Bae BI, Tietjen I, Atabay KD, Evrony GD, Johnson MB, Asare E, Wang PP, Murayama AY, Im K, Lisgo SN, Overman L, Šestan N, Chang BS, Barkovich AJ, Grant PE, Topçu M, Politsky J, Okano H, Piao X, Walsh CA (Feb 2014). "Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning". Science. 343 (6172): 764–8. doi:10.1126/science.1244392. PMC 4480613. PMID 24531968.
  37. Wu MP, Doyle JR, Barry B, Beauvais A, Rozkalne A, Piao X, Lawlor MW, Kopin AS, Walsh CA, Gussoni E (Dec 2013). "G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo". The FEBS Journal. 280 (23): 6097–113. doi:10.1111/febs.12529. PMC 3877849. PMID 24102982.
  38. White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS, Martínez-Redondo V, Gygi SP, Ruas JL, Hornberger TA, Wu Z, Glass DJ, Piao X, Spiegelman BM (Nov 2014). "G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy". Proceedings of the National Academy of Sciences of the United States of America. 111 (44): 15756–61. doi:10.1073/pnas.1417898111. PMC 4226111. PMID 25336758.
  39. Chen G, Yang L, Begum S, Xu L (Dec 2010). "GPR56 is essential for testis development and male fertility in mice". Developmental Dynamics. 239 (12): 3358–67. doi:10.1002/dvdy.22468. PMC 2991479. PMID 20981830.
  40. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (Dec 2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell & Melanoma Research. 21 (6): 665–76. doi:10.1111/j.1755-148X.2008.00505.x. PMID 19067971.
  41. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Déscarie JC, Barkovich AJ, Walsh CA (Mar 2004). "G protein-coupled receptor-dependent development of human frontal cortex". Science. 303 (5666): 2033–6. doi:10.1126/science.1092780. PMID 15044805.
  42. Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO, Walsh CA, Corfas G, Piao X (May 2008). "GPR56 regulates pial basement membrane integrity and cortical lamination". The Journal of Neuroscience. 28 (22): 5817–26. doi:10.1523/JNEUROSCI.0853-08.2008. PMC 2504715. PMID 18509043.
  43. Chen G, Yang L, Begum S, Xu L (Dec 2010). "GPR56 is essential for testis development and male fertility in mice". Developmental Dynamics. 239 (12): 3358–67. doi:10.1002/dvdy.22468. PMC 2991479. PMID 20981830.
  44. Sud N, Sharma R, Ray R, Chattopadhyay TK, Ralhan R (Feb 2006). "Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma". Cancer Letters. 233 (2): 265–70. doi:10.1016/j.canlet.2005.03.018. PMID 15916848.
  45. Ke N, Sundaram R, Liu G, Chionis J, Fan W, Rogers C, Awad T, Grifman M, Yu D, Wong-Staal F, Li QX (Jun 2007). "Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway". Molecular Cancer Therapeutics. 6 (6): 1840–50. doi:10.1158/1535-7163.MCT-07-0066. PMID 17575113.
  46. Maina EN, Morris MR, Zatyka M, Raval RR, Banks RE, Richards FM, Johnson CM, Maher ER (Jun 2005). "Identification of novel VHL target genes and relationship to hypoxic response pathways". Oncogene. 24 (28): 4549–58. doi:10.1038/sj.onc.1208649. PMID 15824735.
  47. Miao R, Guo X, Zhi Q, Shi Y, Li L, Mao X, Zhang L, Li C (2013). "VEZT, a novel putative tumor suppressor, suppresses the growth and tumorigenicity of gastric cancer". PLOS ONE. 8 (9): e74409. doi:10.1371/journal.pone.0074409. PMC 3775783. PMID 24069310.
  48. Ke N, Sundaram R, Liu G, Chionis J, Fan W, Rogers C, Awad T, Grifman M, Yu D, Wong-Staal F, Li QX (Jun 2007). "Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway". Molecular Cancer Therapeutics. 6 (6): 1840–50. doi:10.1158/1535-7163.MCT-07-0066. PMID 17575113.
  49. Saito Y, Kaneda K, Suekane A, Ichihara E, Nakahata S, Yamakawa N, Nagai K, Mizuno N, Kogawa K, Miura I, Itoh H, Morishita K (Aug 2013). "Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56". Leukemia. 27 (8): 1637–49. doi:10.1038/leu.2013.75. PMID 23478665.
  50. Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A, Begum S, Hynes RO, Xu L (Aug 2011). "GPR56 Regulates VEGF production and angiogenesis during melanoma progression". Cancer Research. 71 (16): 5558–68. doi:10.1158/0008-5472.CAN-10-4543. PMC 3156271. PMID 21724588.

External links