Free fatty acid receptor 2: Difference between revisions

Jump to navigation Jump to search
m (→‎Expression: task, replaced: Sci Rep. → Sci. Rep. using AWB)
imported>Citation bot
m (Add: pages, issue, pmc. You can use this bot yourself. Report bugs here. | Headbomb)
 
Line 1: Line 1:
{{Infobox_gene}}
{{Infobox_gene}}
'''Free fatty acid receptor 2''' ('''FFA2''') is a [[G-protein coupled receptor]] encoded by the '''FFAR2''' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: FFAR2 free fatty acid receptor 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2867| accessdate = }}</ref>
'''Free fatty acid receptor 2''' ('''FFAR2''') is a [[G-protein coupled receptor]] encoded by the '''FFAR2''' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: FFAR2 free fatty acid receptor 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2867| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
Line 12: Line 12:


==  Function ==
==  Function ==
Mouse studies utilizing Ffar2 gene deletions have implicated the receptor in the regulation of energy metabolism and immune responses.<ref>{{Cite journal|last=Bindels|first=Laure B.|last2=Dewulf|first2=Evelyne M.|last3=Delzenne|first3=Nathalie M.|date=2013-04-01|title=GPR43/FFA2: physiopathological relevance and therapeutic prospects|journal=Trends in Pharmacological Sciences|volume=34|issue=4|pages=226–232|doi=10.1016/j.tips.2013.02.002|issn=1873-3735|pmid=23489932}}</ref> However, discrepancies between the pathways activated by FFAR2 agonists in human cells and the equivalent murine counterparts have been observed.<ref>{{Cite journal|last=Dewulf|first=Evelyne M.|last2=Ge|first2=Qian|last3=Bindels|first3=Laure B.|last4=Sohet|first4=Florence M.|last5=Cani|first5=Patrice D.|last6=Brichard|first6=Sonia M.|last7=Delzenne|first7=Nathalie M.|date=2013-01-17|title=Evaluation of the relationship between GPR43 and adiposity in human|journal=Nutrition & Metabolism|volume=10|issue=1|pages=11|doi=10.1186/1743-7075-10-11|pmc=3577645|pmid=23327542}}</ref><ref>{{Cite journal|last=Priyadarshini|first=Medha|last2=Villa|first2=Stephanie R.|last3=Fuller|first3=Miles|last4=Wicksteed|first4=Barton|last5=Mackay|first5=Charles R.|last6=Alquier|first6=Thierry|last7=Poitout|first7=Vincent|last8=Mancebo|first8=Helena|last9=Mirmira|first9=Raghavendra G.|date=2015-07-01|title=An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion|journal=Molecular Endocrinology (Baltimore, Md.)|volume=29|issue=7|pages=1055–1066|doi=10.1210/me.2015-1007|issn=1944-9917|pmc=4484778|pmid=26075576}}</ref><ref>{{Cite journal|last=Ang|first=Zhiwei|last2=Er|first2=Jun Zhi|last3=Tan|first3=Nguan Soon|last4=Lu|first4=Jinhua|last5=Liou|first5=Yih-Cherng|last6=Grosse|first6=Johannes|last7=Ding|first7=Jeak Ling|date=2016-09-26|title=Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists|journal=Scientific Reports|volume=6|pages=34145|doi=10.1038/srep34145|issn=2045-2322|pmc=5036191|pmid=27667443}}</ref>
Mouse studies utilizing Ffar2 gene deletions have implicated the receptor in the regulation of energy metabolism and immune responses.<ref>{{Cite journal|last=Bindels|first=Laure B.|last2=Dewulf|first2=Evelyne M.|last3=Delzenne|first3=Nathalie M.|date=2013-04-01|title=GPR43/FFA2: physiopathological relevance and therapeutic prospects|journal=Trends in Pharmacological Sciences|volume=34|issue=4|pages=226–232|doi=10.1016/j.tips.2013.02.002|issn=1873-3735|pmid=23489932}}</ref> [[Short Chain Fatty Acid]]s (SCFA's) generated in the processing of fiber by intestinal microbiota act as ligands for the receptor and can affect neutrophil chemotaxis.<ref>{{Cite journal|last=Yang|first=Guan|date=2018|title=Implication of G Protein-Coupled Receptor 43 in Intestinal Inflammation: A Mini-Review
|journal=Front. Immunol.|volume=9|pages=1434|doi=10.3389/fimmu.2018.01434|pmid=29988393|pmc=6023978}}</ref> <ref>{{Cite journal|last=D'Souza|first=WN|title=Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses.|journal=PLoS One|date=2017-07-20|volume=12|issue=7|pages=e0180190|doi=10.1371/journal.pone.0180190|pmid=28727837|pmc=5519041}}</ref> However, discrepancies between the pathways activated by FFAR2 agonists in human cells and the equivalent murine counterparts have been observed.<ref>{{Cite journal|last=Dewulf|first=Evelyne M.|last2=Ge|first2=Qian|last3=Bindels|first3=Laure B.|last4=Sohet|first4=Florence M.|last5=Cani|first5=Patrice D.|last6=Brichard|first6=Sonia M.|last7=Delzenne|first7=Nathalie M.|date=2013-01-17|title=Evaluation of the relationship between GPR43 and adiposity in human|journal=Nutrition & Metabolism|volume=10|issue=1|pages=11|doi=10.1186/1743-7075-10-11|pmc=3577645|pmid=23327542}}</ref><ref>{{Cite journal|last=Priyadarshini|first=Medha|last2=Villa|first2=Stephanie R.|last3=Fuller|first3=Miles|last4=Wicksteed|first4=Barton|last5=Mackay|first5=Charles R.|last6=Alquier|first6=Thierry|last7=Poitout|first7=Vincent|last8=Mancebo|first8=Helena|last9=Mirmira|first9=Raghavendra G.|date=2015-07-01|title=An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion|journal=Molecular Endocrinology |volume=29|issue=7|pages=1055–1066|doi=10.1210/me.2015-1007|issn=1944-9917|pmc=4484778|pmid=26075576}}</ref><ref>{{Cite journal|last=Ang|first=Zhiwei|last2=Er|first2=Jun Zhi|last3=Tan|first3=Nguan Soon|last4=Lu|first4=Jinhua|last5=Liou|first5=Yih-Cherng|last6=Grosse|first6=Johannes|last7=Ding|first7=Jeak Ling|date=2016-09-26|title=Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists|journal=Scientific Reports|volume=6|pages=34145|doi=10.1038/srep34145|issn=2045-2322|pmc=5036191|pmid=27667443}}</ref>


== Heteromerization ==
== Heteromerization ==
FFAR2 may interact with [[FFAR3]] to form a [[FFAR2-FFAR3 receptor heteromer]] with signalling that is distinct from the parent homomers.<ref>{{Cite journal| doi = 10.1096/fj.201700252RR| issn = 0892-6638| pages = –201700252RR| last1 = Ang| first1 = Zhiwei| last2 = Xiong| first2 = Ding| last3 = Wu| first3 = Min| last4 = Ding| first4 = Jeak Ling| title = FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing| journal = The FASEB Journal| accessdate = 2017-09-10| date = 2017-09-07| url = http://www.fasebj.org/content/early/2017/09/07/fj.201700252RR| pmid = 28883043}}</ref>
FFAR2 may interact with [[FFAR3]] to form a [[FFAR2-FFAR3 receptor heteromer]] with signalling that is distinct from the parent homomers.<ref>{{Cite journal| doi = 10.1096/fj.201700252RR| issn = 0892-6638| pages = –201700252RR| last1 = Ang| first1 = Zhiwei| last2 = Xiong| first2 = Ding| last3 = Wu| first3 = Min| last4 = Ding| first4 = Jeak Ling| title = FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing| journal = The FASEB Journal| accessdate = 2017-09-10| date = 2017-09-07| url = http://www.fasebj.org/content/early/2017/09/07/fj.201700252RR| pmid = 28883043| volume=32| issue = 1| pmc=5731126}}</ref>


== See also ==
== See also ==
* [[Free fatty acid receptor]]
* [[Free fatty acid receptor]]
*[[Short-chain_fatty_acid]]


==References==
==References==
Line 53: Line 55:
}}
}}


[[Category:G protein coupled receptors]]
[[Category:G protein-coupled receptors]]
 
 
{{transmembranereceptor-stub}}
{{transmembranereceptor-stub}}

Latest revision as of 17:31, 3 November 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Free fatty acid receptor 2 (FFAR2) is a G-protein coupled receptor encoded by the FFAR2 gene.[1]


Expression

FFAR2 mRNA is expressed in adipose tissue, pancreas, spleen, lymph nodes, bone marrow, and peripheral blood mononuclear cells.[2][3] FFAR2 transcription is regulated by the XBP1 transcription factor which binds to the core promoter.[4]

Function

Mouse studies utilizing Ffar2 gene deletions have implicated the receptor in the regulation of energy metabolism and immune responses.[5] Short Chain Fatty Acids (SCFA's) generated in the processing of fiber by intestinal microbiota act as ligands for the receptor and can affect neutrophil chemotaxis.[6] [7] However, discrepancies between the pathways activated by FFAR2 agonists in human cells and the equivalent murine counterparts have been observed.[8][9][10]

Heteromerization

FFAR2 may interact with FFAR3 to form a FFAR2-FFAR3 receptor heteromer with signalling that is distinct from the parent homomers.[11]

See also

References

  1. "Entrez Gene: FFAR2 free fatty acid receptor 2".
  2. Nilsson NE, Kotarsky K, Owman C, Olde B (2003). "Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids". Biochem. Biophys. Res. Commun. 303 (4): 1047–52. doi:10.1016/S0006-291X(03)00488-1. PMID 12684041.
  3. Le Poul E, Loison C, Struyf S (2003). "Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation". J. Biol. Chem. 278 (28): 25481–9. doi:10.1074/jbc.M301403200. PMID 12711604.
  4. Ang Z, Er JZ, Ding JL (2015). "The short-chain fatty acid receptor GPR43 is transcriptionally regulated by XBP1 in human monocytes". Sci. Rep. 5: 8134. doi:10.1038/srep08134. PMC 4311239. PMID 25633224.
  5. Bindels, Laure B.; Dewulf, Evelyne M.; Delzenne, Nathalie M. (2013-04-01). "GPR43/FFA2: physiopathological relevance and therapeutic prospects". Trends in Pharmacological Sciences. 34 (4): 226–232. doi:10.1016/j.tips.2013.02.002. ISSN 1873-3735. PMID 23489932.
  6. Yang, Guan (2018). "Implication of G Protein-Coupled Receptor 43 in Intestinal Inflammation: A Mini-Review". Front. Immunol. 9: 1434. doi:10.3389/fimmu.2018.01434. PMC 6023978. PMID 29988393.
  7. D'Souza, WN (2017-07-20). "Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses". PLoS One. 12 (7): e0180190. doi:10.1371/journal.pone.0180190. PMC 5519041. PMID 28727837.
  8. Dewulf, Evelyne M.; Ge, Qian; Bindels, Laure B.; Sohet, Florence M.; Cani, Patrice D.; Brichard, Sonia M.; Delzenne, Nathalie M. (2013-01-17). "Evaluation of the relationship between GPR43 and adiposity in human". Nutrition & Metabolism. 10 (1): 11. doi:10.1186/1743-7075-10-11. PMC 3577645. PMID 23327542.
  9. Priyadarshini, Medha; Villa, Stephanie R.; Fuller, Miles; Wicksteed, Barton; Mackay, Charles R.; Alquier, Thierry; Poitout, Vincent; Mancebo, Helena; Mirmira, Raghavendra G. (2015-07-01). "An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion". Molecular Endocrinology. 29 (7): 1055–1066. doi:10.1210/me.2015-1007. ISSN 1944-9917. PMC 4484778. PMID 26075576.
  10. Ang, Zhiwei; Er, Jun Zhi; Tan, Nguan Soon; Lu, Jinhua; Liou, Yih-Cherng; Grosse, Johannes; Ding, Jeak Ling (2016-09-26). "Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists". Scientific Reports. 6: 34145. doi:10.1038/srep34145. ISSN 2045-2322. PMC 5036191. PMID 27667443.
  11. Ang, Zhiwei; Xiong, Ding; Wu, Min; Ding, Jeak Ling (2017-09-07). "FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing". The FASEB Journal. 32 (1): –201700252RR. doi:10.1096/fj.201700252RR. ISSN 0892-6638. PMC 5731126. PMID 28883043. Retrieved 2017-09-10.

External links

Further reading