Tongue cancer risk factors

Revision as of 20:30, 28 November 2017 by Medhat (talk | contribs)
Jump to navigation Jump to search

Tongue cancer Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Tongue cancer from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Tongue cancer risk factors On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Tongue cancer risk factors

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Tongue cancer risk factors

CDC on Tongue cancer risk factors

Tongue cancer risk factors in the news

Blogs on Tongue cancer risk factors

Directions to Hospitals Treating Tongue cancer

Risk calculators and risk factors for Tongue cancer risk factors

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Simrat Sarai, M.D. [2]

Overview

The most potent risk factor in the development of oral cancer is alcohol intake, tobacco use and human papillomavirus transmitted through sexual contact. The other risk factors include history of betel quid intake, male gender, age over 55 year, ultraviolet light, Fanconi anemia, dyskeratosis congenita, lichen planus, graft-versus-host disease (GVHD), immune system suppression, mouthwash and irritation from dentures.[1]

Risk Factors

The major risk factors in the development of tongue cancer includes the following:[1]

  • Tobacco smoking
    • Cancer of the tongue is correlated the closest with the use of tobacco products.
    • Approximately 90% of patients with oral cavity cancers use tobacco products and that the relative risk of oral cavity cancers increases with the amount smoked and the duration of the smoking.
    • In persons who smoke the incidence of oral cavity cancers is approximately six times that of those who do not smoke.
    • Tobacco exposure causes progressive sequential histological changes to the oral mucosa. Prolonged period of exposure eventually leads to neoplastic transformation, in particular changes in the expression of p53 mutations. If the tobacco exposure is discontinued, these changes may be reversible.
    • There is compelling evidence supporting the benefit for head and neck cancer patients to cease smoking after treatment for their cancer. Approximately 40% of patients who continued to smoke after definitive treatment for an oral cavity malignancy developed recurrence or developed a second head and neck malignancy. In patients who stopped smoking after treatment, approximately 6% went on to develop a recurrence.
    • There has been recent increase in the incidence of oral cavity cancer in young adults in the recent years. The explosive use of smokeless tobacco, or snuff, in certain regions of the United States has lead to increased numbers of mandibular alveolus, buccal mucosa, and tongue cancers.
  • Alcohol ingestion
    • The correlation between alcohol consumption, particularly hard liquor, and oral cavity cancer is significant, especially in patients taking more than four consumptions per day.
    • Approximately 75% of patients who develop oral cavity cancers consume alcohol, and the cancer occurs six times more often in persons who drink than in those who do not drink. The role of alcohol consumption in the development of tongue cancer appears to be independent of smoking.
    • The use of alcohol has a synergistic effect on the risk of carcinogenesis rather than cumulative effect. The risk for a person who drinks alcohol and smokes tobacco is fifteen times that of an individual with neither of these habits.
  • Human papillomavirus
    • The human papillomavirus, is an etiologic agent for carcinogenesis in the tongue cancer. Human papillomavirus (HPV) has been detected in various amounts in persons with leukoplakia, oral dysplasia, and malignancy. In the subset of patients without other risk factors, HPV should be considered as an etiologic factor. Human papillomavirus (HPV), especially HPV type 16.[2]
  • Plummer-Vinson syndrome
    • Plummer-Vinson syndrome (Fe deficiency anemia; achlorhydria; and mucosal atrophy of the mouth, pharynx, and esophagus) has been associated with an increased risk of cancer of the tongue. Studies have suggested that vitamins A and C, along with the carotenoids, may be protective against epithelial cancers. Iron and riboflavin deficiencies are known to produce dysplastic changes to the oral mucosa.

Precancerous lesions

Oral leukoplakia

  • Leukoplaki is A white plaque it often occurs in individuals under the age of 40[12].
  • Leukoplakia is seen six times more among smokers than among non-smokers[1].
  • Leukoplakia can be divided into two subtypes including homogeneous and non-homogeneous types[1].
  • Homogenous lesions are characterized by uniformly flat, thin, uniformly white in colour and shows shallow cracks of the surface keratin[1,13].
  • Nonhomogenous lesions have been defined as a white and red lesion (known as erythroleukoplakia) that may be either irregularly flat (speckled) or nodular (Figure 1).
  • Verrucous leukoplakia is yet another type of non-homogenous leukoplakia[ 14].
  • Histopathologically, two distinct appearances may be seen as dysplastic or non-dysplastic leukoplakia.
Risk factors of malignant transformation
  • Female gender
  • Long duration of leukoplakia
  • Leukoplakia in non-smokers
  • Location on the tongue and/or floor of the mouth
  • Size > 200 mm2
  • Non-homogenous type
  • Presence of epithelial dysplasia

The diseases should be considered in the differential diagnosis including aspirin burn, chemical injury, oral pseudomembranous and hyperplastic candidiasis,

frictional lesions, oral hairy leukoplakia, leukoedema, linea alba, lupus erythematosus, morsicatio buccarum, papilloma and allied lesions, mucous patches in secondary syphilis, tobacco-induced lesions, smoker’s palate (nicotinic stomatitis), stuff-induced lesion, white sponge nevus, oral lichen planus (OLP), and lichenoid reaction[1,13].

Oral leukoplakia should be confirmed by mucosal biopsy.

Surgical excision should be recommended in the presence of moderate and severe epithelial dysplasia.

Recurrence of leukoplakia was reported as approximately 50% after withdrawing the topical retinoic acid[21].

Oral erythroplakia

  • Erythroplakia is a red patch on the tongue surface.
  • It occurs in middle aged and elderly patients and affects the soft palate, the floor of the mouth, and the buccal mucosa mainly. [14,22]
  • Tobacco and alcohol consuming are the most common risk factors. [23]
  • The lesion is less than 1.5 cm in diameter, but its size may range between one to four cm. [22]. [14,22].
  • Early effective treatment is mandatory as malignant transformation rates are very high. [22]
  • Surgery is the recommended treatment. [1]

Oral lichen planus

  • Lichen planus is a chronic inflammatory disease which may affect oral mucosa between other areas of body. [26].
  • It mainly occurs in females between third and sixth decade. [25,27] [28].
  • It may be multifocal, papular, bullous, erosive, reticular, and atrophic forms. [25]
  • Atrophic and erosive pattern are associated with a burning sensation and pain.
  • Increased malignant transformation risk occurs greater in erosive and atrophic types. [27]
  • Other factors
    • A number of other factors have been associated with an increased incidence of tongue cancer such as the use of the product of the areca catechu tree, the betel nuts or quid as well as the use of slaked lime. This mixture is highly irritating to the oral mucosa, and as well as carcinogenic.
    • The mutations in tumor suppressor genes has been reported in patients with cancers of the oral cavity. The most abundant carcinogens in tobacco constitute nitrosamines. Nitrosamines can damage DNA, leading to point mutations. These point mutations lead to deregulation of tumor suppressor genes (TP53), which is located on chromosome 17. The other oncogenes associated with oral squamous cell cancers of tongue include c-myc and erb -b1.

Other less potent risk factors includes the following:

References

  1. 1.0 1.1 Squamous cell carcinoma of the tongue. Radiopedia(2015) http://radiopaedia.org/articles/squamous-cell-carcinoma-of-the-tongue Accessed on November 16, 2015
  2. Oropharyngeal cancer. National Cancer Institute(2015) http://www.cancer.gov/types/head-and-neck/hp/oropharyngeal-treatment-pdq Accessed on November 16, 2015

Template:WikiDoc Sources