Chronic renal failure pathophysiology: Difference between revisions

Jump to navigation Jump to search
Rim Halaby (talk | contribs)
Rim Halaby (talk | contribs)
Line 10: Line 10:


===Hyperfiltration===
===Hyperfiltration===
The landmark works of Brenner et al were the first to propose the maladaptive changes that occur after renal injury. The team showed that after significant loss of nephron mass, major alterations in glomerular hemodynamics occur. The changes lead to glomerular hypertension with an increase in single nephron glomerular filtration rate termed hyperfiltration. Hyperfiltration is a direct result of the increase in glomerular plasma flow and hydrostatic pressure in response to a decrease in preglomerular arteriolar resistance more than the decrease in postglomerular resistance with a net vasocontrictive effect on the efferent arteriole.
The landmark works of Brenner et al were the first to propose the maladaptive changes that occur after renal injury. The team showed that after significant loss of nephron mass, major alterations in glomerular hemodynamics occur. The changes lead to glomerular hypertension with an increase in single nephron glomerular filtration rate termed hyperfiltration.<ref name="pmid7050706">{{cite journal|author=Brenner BM, Meyer TW, Hostetter TH| title=Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. | journal=N Engl J Med | year= 1982 | volume= 307 | issue= 11 | pages= 652-9 |pmid=7050706 | doi=10.1056/NEJM198209093071104 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7050706 }} </ref>  Hyperfiltration is a direct result of the increase in glomerular plasma flow and hydrostatic pressure in response to a decrease in preglomerular arteriolar resistance more than the decrease in postglomerular resistance with a net vasocontrictive effect on the efferent arteriole.<ref name="pmid8743495‎">{{cite journal| author=Brenner BM, Lawler EV, Mackenzie HS| title=The hyperfiltration theory: a paradigm shift in nephrology. | journal=Kidney Int | year= 1996 | volume= 49 | issue= 6 | pages= 1774-7 | pmid=8743495‎ | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8743495 }} </ref>


The observed alterations occur due to the activation of the RAAS system. Initially, the juxtaglomerular apparatus increases the release of renin in response to the decreased perfusion pressure and solute delivery to the macula densa. Renin converts angiotensinogen to angiotensin I which is then converted to angiotensin II is then produced by angiotensin converting enzyme (ACE). Angiotensin II has been shown to be the main perpetrator in the maladaptation of the kidney to significant damage.
The observed alterations occur due to the activation of the RAAS system. Initially, the juxtaglomerular apparatus increases the release of renin in response to the decreased perfusion pressure and solute delivery to the macula densa. Renin converts angiotensinogen to angiotensin I which is then converted to angiotensin II is then produced by angiotensin converting enzyme (ACE). Angiotensin II has been shown to be the main perpetrator in the maladaptation of the kidney to significant damage.<ref name="pmid17035613">{{cite journal| author=Rüster C, Wolf G| title=Renin-angiotensin-aldosterone system and progression of renal disease. | journal=J Am Soc Nephrol | year= 2006 | volume= 17 | issue= 11 | pages= 2985-91 | pmid=17035613 | doi=10.1681/ASN.2006040356 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17035613 }} </ref>


[[Image:Hyperfiltration.jpg|650px|center]]
[[Image:Hyperfiltration.jpg|650px|center]]


Most animal models exploring glomerular hypertension and hyperfiltration show progressive glomerular sclerosis and eventual proteinuria that usually occurs at a linear rate compared to the extent of nephron loss. Furthermore, studies examining the prevention or reduction of glomerular hypertension and single nephron GFR have almost invariably shown a reduction in the rate of progression of renal disease. Among the proposed interventions include dietary protein restriction, ACE inhibitors, and angiotensin receptor blockers (ARBs).
Most animal models exploring glomerular hypertension and hyperfiltration show progressive glomerular sclerosis and eventual proteinuria that usually occurs at a linear rate compared to the extent of nephron loss.<ref name="pmid7246778">{{cite journal| author=Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM| title=Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. | journal=Am J Physiol | year= 1981 | volume= 241 | issue= 1 | pages= F85-93 | pmid=7246778 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7246778 }} </ref><ref name="pmid7050706">{{cite journal|author=Brenner BM, Meyer TW, Hostetter TH| title=Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. | journal=N Engl J Med | year= 1982 | volume= 307 | issue= 11 | pages= 652-9 |pmid=7050706 | doi=10.1056/NEJM198209093071104 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7050706 }} </ref><ref name="pmid10828756‎">{{cite journal| author=Fogo AB| title=Glomerular hypertension, abnormal glomerular growth, and progression of renal diseases. | journal=Kidney Int Suppl | year= 2000 | volume= 75 | issue= | pages= S15-21 | pmid=10828756‎ | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10828756 }} </ref><ref name="pmid7036732">{{cite journal| author=Hostetter TH, Rennke HG, Brenner BM| title=The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. | journal=Am J Med | year= 1982 | volume= 72 | issue= 3 | pages= 375-80 | pmid=7036732 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7036732 }} </ref> Furthermore, studies examining the prevention or reduction of glomerular hypertension and single nephron GFR have almost invariably shown a reduction in the rate of progression of renal disease.<ref name="pmid2993362">{{cite journal| author=Anderson S, Meyer TW, Rennke HG, Brenner BM| title=Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. | journal=J Clin Invest | year= 1985 | volume= 76 | issue= 2 | pages= 612-9 | pmid=2993362 | doi=10.1172/JCI112013 | pmc=PMC423867 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2993362 }} </ref><ref name="pmid3033388">{{cite journal| author=Meyer TW, Anderson S, Rennke HG, Brenner BM| title=Reversing glomerular hypertension stabilizes established glomerular injury. | journal=Kidney Int | year= 1987 | volume= 31 | issue= 3 | pages= 752-9 | pmid=3033388 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3033388 }} </ref> Among the proposed interventions include dietary protein restriction, ACE inhibitors, and angiotensin receptor blockers (ARBs).<ref name="pmid15698420">{{cite journal| author=Wolf G, Ritz E| title=Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. | journal=Kidney Int | year= 2005 | volume= 67 | issue= 3 | pages= 799-812 | pmid=15698420 | doi=10.1111/j.1523-1755.2005.00145.x | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15698420 }} </ref>


===Inflammation===
===Inflammation===

Revision as of 23:31, 26 October 2013

Chronic renal failure Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Chronic renal failure from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Chronic renal failure pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Chronic renal failure pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Chronic renal failure pathophysiology

CDC on Chronic renal failure pathophysiology

Chronic renal failure pathophysiology in the news

Blogs on Chronic renal failure pathophysiology

Directions to Hospitals Treating Chronic renal failure

Risk calculators and risk factors for Chronic renal failure pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Aarti Narayan, M.B.B.S [2]

Overview

Pathophysiology

The pathophysiologic mechanisms leading to chronic kidney disease stem from the underlying etiologies responsible for the primary renal damage. The initial insult is responsible for a decrease in the number of functional nephrons. However; beyond that initial insult, a form of maladaptive systemic and renal response arises that maintains and perpetuates the existing renal disease. With the activation of the renin-angiotensin-aldosterone system, a combination of mechanisms herald a progressive loss of nephrons. Broadly, 3 main mechanisms exist related in part to the activation of the RAAS: hyperfiltration, inflammation, and accelerated fibrosis.

Hyperfiltration

The landmark works of Brenner et al were the first to propose the maladaptive changes that occur after renal injury. The team showed that after significant loss of nephron mass, major alterations in glomerular hemodynamics occur. The changes lead to glomerular hypertension with an increase in single nephron glomerular filtration rate termed hyperfiltration.[1] Hyperfiltration is a direct result of the increase in glomerular plasma flow and hydrostatic pressure in response to a decrease in preglomerular arteriolar resistance more than the decrease in postglomerular resistance with a net vasocontrictive effect on the efferent arteriole.[2]

The observed alterations occur due to the activation of the RAAS system. Initially, the juxtaglomerular apparatus increases the release of renin in response to the decreased perfusion pressure and solute delivery to the macula densa. Renin converts angiotensinogen to angiotensin I which is then converted to angiotensin II is then produced by angiotensin converting enzyme (ACE). Angiotensin II has been shown to be the main perpetrator in the maladaptation of the kidney to significant damage.[3]

Most animal models exploring glomerular hypertension and hyperfiltration show progressive glomerular sclerosis and eventual proteinuria that usually occurs at a linear rate compared to the extent of nephron loss.[4][1][5][6] Furthermore, studies examining the prevention or reduction of glomerular hypertension and single nephron GFR have almost invariably shown a reduction in the rate of progression of renal disease.[7][8] Among the proposed interventions include dietary protein restriction, ACE inhibitors, and angiotensin receptor blockers (ARBs).[9]

Inflammation

Angiotensin II has also been linked to and increase in inflammation after renal injury. It has been shown to activate the transcription factor NF-κB, an important player in the inflammatory response mediating transcription of several cytokines and chemokines. ATII has also been shown to stimulate endothelin-1 leading to the recruitment of T-cells and macrophages. Beyond that, it upregulates the expression of adhesion molecules notably integrins, intracellular adhesion molecule-1, and vascular cellular adhesion molecule-1 all of which lead to and increase in leukocyte concentration in the area. This creates a vicious cycle as lymphocytes can be a source of angiotensin II themselves amplifying its maladaptive effects.

Accelerated Fibrosis

The increase in angiotensin II has also been directly associated with accelerated fibrosis in the remaining nephrons independently of the hemodynamic changes. Angiotensin II is thought to exert direct effects in the glomerular micromilieu leading to extracellular matrix (ECM) expansion. Angiotensin II has been shown to increase mRNA encoding type I procollagen and fibronectin in cultured mesangial cells. This effect is multiplied by the increase in expression of TGF-β further activating ECM protein production. In normal renal tissue, the balance between ECM synthesis and degradation is essential to prevent fibrotic glomerular changes. Beyond the increase in ECM production, angiotensin II also disrupts this balance. Via ATI receptors, it activates tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) and plasminogen activator inhibitor-1 (PAI-1) both of which shift the balance towards ECM accumulation.

Another method of accelerated fibrosis is a process called epithelial-to-mesenchymal transition (EMT) where tissue epithelial cells transform into active fibroblasts. Although previously recognized as a physiologic mechanism during embryologic development, it has come to light as a process that provides fibroblasts during organ fibrosis after injury. Experimentally, more than one third of fibroblast at the site of renal injury were shown to originate from the renal tubular epithelial cells. The prototypical factor linked to EMT is TGF-β which is usually elevated after renal injury; however, other local factors also induce EMT including epidermal growth factor (EGF), Insulin growth factor II (IGF-II), and fibroblast growth factor (FGF-2).

References

  1. 1.0 1.1 Brenner BM, Meyer TW, Hostetter TH (1982). "Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease". N Engl J Med. 307 (11): 652–9. doi:10.1056/NEJM198209093071104. PMID 7050706.
  2. Brenner BM, Lawler EV, Mackenzie HS (1996). "The hyperfiltration theory: a paradigm shift in nephrology". Kidney Int. 49 (6): 1774–7. PMID 8743495‎ Check |pmid= value (help).
  3. Rüster C, Wolf G (2006). "Renin-angiotensin-aldosterone system and progression of renal disease". J Am Soc Nephrol. 17 (11): 2985–91. doi:10.1681/ASN.2006040356. PMID 17035613.
  4. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981). "Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation". Am J Physiol. 241 (1): F85–93. PMID 7246778.
  5. Fogo AB (2000). "Glomerular hypertension, abnormal glomerular growth, and progression of renal diseases". Kidney Int Suppl. 75: S15–21. PMID 10828756‎ Check |pmid= value (help).
  6. Hostetter TH, Rennke HG, Brenner BM (1982). "The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies". Am J Med. 72 (3): 375–80. PMID 7036732.
  7. Anderson S, Meyer TW, Rennke HG, Brenner BM (1985). "Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass". J Clin Invest. 76 (2): 612–9. doi:10.1172/JCI112013. PMC 423867. PMID 2993362.
  8. Meyer TW, Anderson S, Rennke HG, Brenner BM (1987). "Reversing glomerular hypertension stabilizes established glomerular injury". Kidney Int. 31 (3): 752–9. PMID 3033388.
  9. Wolf G, Ritz E (2005). "Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications". Kidney Int. 67 (3): 799–812. doi:10.1111/j.1523-1755.2005.00145.x. PMID 15698420.

Template:WH Template:WS