Presyncope: Difference between revisions
No edit summary |
No edit summary |
||
Line 102: | Line 102: | ||
Prognosis of syncope depends on the underlying cause. Patients with syncope with structural heart disease and primary electrical disease are at high risk of overall mortality and sudden cardiac death. Young patients with reflex syncope have an excellent prognosis.<sup>2</sup> | Prognosis of syncope depends on the underlying cause. Patients with syncope with structural heart disease and primary electrical disease are at high risk of overall mortality and sudden cardiac death. Young patients with reflex syncope have an excellent prognosis.<sup>2</sup> | ||
<ref name="pmid19713422">{{cite journal| author=Task Force for the Diagnosis and Management of Syncope. European Society of Cardiology (ESC). European Heart Rhythm Association (EHRA). Heart Failure Association (HFA). Heart Rhythm Society (HRS). Moya A | display-authors=etal| title=Guidelines for the diagnosis and management of syncope (version 2009). | journal=Eur Heart J | year= 2009 | volume= 30 | issue= 21 | pages= 2631-71 | pmid=19713422 | doi=10.1093/eurheartj/ehp298 | pmc=3295536 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19713422 }} </ref> | |||
Morbidity in patients with syncope is associated with recurrence of episodes and physical injury. In population studies, approximately a third of patients have recurrence of syncope in 3 years of follow up, and the rate of recurrence seems to be dependent on the number of previous episodes, but independent of gender, tilt test results, severity and presence of heart disease. The predicted recurrence in 1 to 2 years for patients with 1 or 2 syncope episodes is 15% to 20% whereas for patients with 3 syncope episodes it is 36% to 45%. Young patients with psychiatric disease have high rates of recurrence of pseudosyncope.<sup>2</sup><ref name="pmid19713422">{{cite journal| author=Task Force for the Diagnosis and Management of Syncope. European Society of Cardiology (ESC). European Heart Rhythm Association (EHRA). Heart Failure Association (HFA). Heart Rhythm Society (HRS). Moya A | display-authors=etal| title=Guidelines for the diagnosis and management of syncope (version 2009). | journal=Eur Heart J | year= 2009 | volume= 30 | issue= 21 | pages= 2631-71 | pmid=19713422 | doi=10.1093/eurheartj/ehp298 | pmc=3295536 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19713422 }} </ref> | |||
In patients with syncope presenting to the emergency department, 29.1% have minor trauma, 4.7% have major trauma, and in older patients with carotid disease, 43% have major trauma. Morbidity is particularly high in the elderly, and is associated with loss of confidence, fear of falling, depression, fractures, and institutionalization.<sup>2</sup><ref name="pmid19713422">{{cite journal| author=Task Force for the Diagnosis and Management of Syncope. European Society of Cardiology (ESC). European Heart Rhythm Association (EHRA). Heart Failure Association (HFA). Heart Rhythm Society (HRS). Moya A | display-authors=etal| title=Guidelines for the diagnosis and management of syncope (version 2009). | journal=Eur Heart J | year= 2009 | volume= 30 | issue= 21 | pages= 2631-71 | pmid=19713422 | doi=10.1093/eurheartj/ehp298 | pmc=3295536 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19713422 }} </ref> | |||
In patients with syncope presenting to the emergency department, 29.1% have minor trauma, 4.7% have major trauma, and in older patients with carotid disease, 43% have major trauma. Morbidity is particularly high in the elderly, and is associated with loss of confidence, fear of falling, depression, fractures, and institutionalization.<sup>2</sup> | |||
==Diagnosis== | ==Diagnosis== |
Revision as of 02:08, 31 January 2021
WikiDoc Resources for Presyncope |
Articles |
---|
Most recent articles on Presyncope |
Media |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Presyncope at Clinical Trials.gov Clinical Trials on Presyncope at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Presyncope
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Presyncope Discussion groups on Presyncope Patient Handouts on Presyncope Directions to Hospitals Treating Presyncope Risk calculators and risk factors for Presyncope
|
Healthcare Provider Resources |
Causes & Risk Factors for Presyncope |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Vendhan Ramanujam M.B.B.S [2] Antara Chatterjee, M.D[3]
Synonyms and keywords: Faintness; generalized weakness; lightheadedness; near blackout; near fainting; near syncope
Overview
Presyncope is the sensation of feeling faint, lightheadedness[1] and muscular weakness without actually losing consciousness. The presyncope stage may occur for only a few seconds as a prodrome before losing consciousness. Presyncope is most often due to cardiovascular etiology.
Classification
Presyncope may be classified into following subtypes based on the inciting mechanism leading to the final event of transient global hypoperfusion. Presyncope suggests global cerebral hypoperfusion or a toxic/metabolic derangement. Hypoperfusion usually results from a drop in blood pressure (BP).
Cardiac | Non-Cardiac |
---|---|
Dysrythmia | Neurally-mediated (reflex) |
Structural disease | Orthostatic hypotension mediated |
Neurological | |
Psychogenic |
Pathophysiology
It is thought that presyncope is the result of the interaction between the circulatory system and the autonomic nervous system. The autonomic nervous system is vital for the maintenance of internal homeostasis including regulation of blood pressure, heart rate, fluid and electrolyte balance, and body temperature. Syncope or presyncope occurs as a result of brain hypoxia, which is usually secondary to a reduction of cerebral perfusion pressure. However, not every reduction in blood pressure leads to brain hypoxia. This is because the cerebral circulation is autoregulated so that brain perfusion is maintained in the face of significant changes in mean blood pressure. This homeostatic mechanism allows regional cerebral blood flow to remain constant over a range of cerebral perfusion pressure (CPP) of 50 to 150 mm Hg or mean arterial pressure (MAP) of 60 to 160 mm Hg. So, as MAP or CPP increases, resistance in small cerebral arteries increases via vasoconstriction and vice versa.[2] Blood pressure below the lower level result in syncope secondary to brain hypoxia.
When standing, initially the force of gravity pools 500 to 800 mL of blood in the distensible veins below heart level.[3] This increases capillary pressure and plasma is lost to interstitial fluid. Pooling of blood in the veins decreases venous return to the heart with subsequent reduction of cardiac output, which in turn, triggers compensatory mechanisms to prevent the reduction of arterial pressure. Compensatory mechanisms include: sympathetic outflow upregulation by the central autonomic network (CAN); and the venoarterial reflex, leg pumping of skeletal muscles, the cerebral autoregulatory mechanism, and to a lesser extent, the renin angiotensin aldosterone system (RAAS).
The autonomic supply to the cardiovascular system is coordinated at the CAN located in the brain stem. The sympathetic nervous system acts as the main effector in the hemodynamic response to postural stressors. Upon standing, there is an initial reduction of cardiac filling and thus, of stroke volume. Pressure receptors in the heart, carotids, and aortic arch sense the perturbation and send impulses to the CAN. This initiates sympathetic vasomotor outflow and norepinephrine is released to vascular beds in the skeletal muscles and cutaneous vasculature; causing vasoconstriction, venoconstriction, as well as increased heart rate and contractility. Venoconstriction causes a correction of orthostasis by increasing cardiac filling for a given amount of gravitational pooling of blood. At the same time, leg pumping of skeletal muscles enhances venous return to the heart and the venoarterial reflex augments arterial vasoconstriction in response to venous distention.
Postural stress in the atrium is sensed by mechanoreceptors as a decreased in atrial stretch. This causes increase of arginine vasopressin (AVP) and decrease in A-type atrial natriuretic peptide (ANP) secretion. This results in “anti-natriuresis” that leads to an increase of ECF volume and cardiac filling.
The pathophysiology of syncope is summarized as a reduction in systemic blood pressure that causes a decrease in the global cerebral blood flow, which results in loss of consciousness. A sudden cessation of cerebral blood flow for 6 to 8 seconds has been shown to cause loss of consciousness.[4]
Causes
Presyncope may be caused by [cause1], [cause2], or [cause3].
OR
Common causes of [disease] include [cause1], [cause2], and [cause3].
OR
The most common cause of [disease name] is [cause 1]. Less common causes of [disease name] include [cause 2], [cause 3], and [cause 4].
OR
The cause of [disease name] has not been identified. To review risk factors for the development of [disease name], click here.
Differentiating ((Page name)) from other Diseases
[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].
OR
[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].
Epidemiology and Demographics
Patients of all age groups may develop presyncope. The prevalence of the causes of syncope is different depending on the clinical settings in which the patient is evaluated and the age of the patients. Furthermore, other differences depend on diagnostic definitions, geographical factors, and local care pathways, making a comparison between different studies difficult.19% of the United States population will experience a syncopal event in their lifetime, with the majority occurring in either the early adult years or after age 70; almost 58% of patients with syncope are female.[5] [6] 3% of visits to emergency departments and up to 6% of admissions to hospitals in the United States are for syncope.[7] [8] Reflex syncope is the most frequent cause of syncope in any setting. Syncope secondary to cardiovascular disease is the second most common cause. The number of patients with a cardiovascular cause varies widely between studies; higher frequencies are observed in emergency settings mainly in older subjects, and in settings oriented toward cardiology. In patients <40 years OH is a rare cause of syncope; OH is frequent in very old patients. Non-syncopal conditions, misdiagnosed as syncope at initial evaluation, are more frequent in emergency referrals and reflect the multifactorial complexity of these patients. The high unexplained syncope rate in all settings justifies new strategies for evaluation and diagnosis. In the elderly multiple causes are often present and the medical history may be less reliable than in the young.[9] [10] [11] .
Risk Factors
There are no established risk factors for [disease name].
OR
The most potent risk factor in the development of [disease name] is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] may be occupational, environmental, genetic, and viral.
Screening
There is insufficient evidence to recommend routine screening for [disease/malignancy].
OR
According to the [guideline name], screening for [disease name] is not recommended.
OR
According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].
Natural History, Complications, and Prognosis
If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
OR
Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
OR
Prognosis of syncope depends on the underlying cause. Patients with syncope with structural heart disease and primary electrical disease are at high risk of overall mortality and sudden cardiac death. Young patients with reflex syncope have an excellent prognosis.2 [4] Morbidity in patients with syncope is associated with recurrence of episodes and physical injury. In population studies, approximately a third of patients have recurrence of syncope in 3 years of follow up, and the rate of recurrence seems to be dependent on the number of previous episodes, but independent of gender, tilt test results, severity and presence of heart disease. The predicted recurrence in 1 to 2 years for patients with 1 or 2 syncope episodes is 15% to 20% whereas for patients with 3 syncope episodes it is 36% to 45%. Young patients with psychiatric disease have high rates of recurrence of pseudosyncope.2[4]
In patients with syncope presenting to the emergency department, 29.1% have minor trauma, 4.7% have major trauma, and in older patients with carotid disease, 43% have major trauma. Morbidity is particularly high in the elderly, and is associated with loss of confidence, fear of falling, depression, fractures, and institutionalization.2[4]
Diagnosis
Diagnostic Study of Choice
The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].
OR
The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].
OR
The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].
OR
There are no established criteria for the diagnosis of [disease name].
History and Symptoms
The majority of patients with presyncope report:
- lightheadedness, general weakness
- dizziness
- confusion
- tunnel vision, blurry vision
- slurred speech
- trouble hearing
- sweating
- nausea or vomiting
- headache
- heart palpitations
These symptoms can last from just a few seconds to several minutes before they pass.
Physical Examination
Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].
OR
Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
The presence of [finding(s)] on physical examination is diagnostic of [disease name].
OR
The presence of [finding(s)] on physical examination is highly suggestive of [disease name].
Laboratory Findings
An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of [disease name].
OR
Laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
OR
[Test] is usually normal among patients with [disease name].
OR
Some patients with [disease name] may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].
OR
There are no diagnostic laboratory findings associated with [disease name].
Electrocardiogram
There are no ECG findings associated with [disease name].
OR
An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
X-ray
There are no x-ray findings associated with [disease name].
OR
An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Echocardiography or Ultrasound
There are no echocardiography/ultrasound findings associated with [disease name].
OR
Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
CT scan
There are no CT scan findings associated with [disease name].
OR
[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
MRI
There are no MRI findings associated with [disease name].
OR
[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Other Imaging Findings
There are no other imaging findings associated with [disease name].
OR
[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
Other Diagnostic Studies
There are no other diagnostic studies associated with [disease name].
OR
[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].
Treatment
Medical Therapy
There is no treatment for [disease name]; the mainstay of therapy is supportive care.
OR
Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].
OR
The majority of cases of [disease name] are self-limited and require only supportive care.
OR
[Disease name] is a medical emergency and requires prompt treatment.
OR
The mainstay of treatment for [disease name] is [therapy].
OR The optimal therapy for [malignancy name] depends on the stage at diagnosis.
OR
[Therapy] is recommended among all patients who develop [disease name].
OR
Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].
OR
Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].
OR
Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].
OR
Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].
Surgery
Surgical intervention is not recommended for the management of [disease name].
OR
Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]
OR
The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].
OR
The feasibility of surgery depends on the stage of [malignancy] at diagnosis.
OR
Surgery is the mainstay of treatment for [disease or malignancy].
Primary Prevention
There are no established measures for the primary prevention of [disease name].
OR
There are no available vaccines against [disease name].
OR
Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
OR
[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].
Secondary Prevention
There are no established measures for the secondary prevention of [disease name].
OR
Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].
Overview. In many patients, lightheadedness is a symptom of orthostatic hypotension. Orthostatic hypotension occurs when blood pressure drops significantly when the patient stands from a supine or sitting position. If loss of consciousness occurs in this situation, it is termed syncope. Presyncope is frequently reported in patients with forms of Dysautonomia such as the Postural Tachycardia Syndrome. According to McGraw-Hill Concise Dictionary of Modern Medicine © 2002, presyncope is "An episode of near-fainting which may include lightheadedness, dizziness, severe weakness, blurred vision, which may precede a syncopal episode."
Causes
Life-Threatening Causes
Life-threatening causes include conditions which may result in death or permanent disability within 24 hours if left untreated.
Common Causes
Causes by Organ System
Causes in Alphabetical Order
Clinical test
The tilt table test is an evaluative clinical test to help identify presyncope or syncope.[16] A tilt angle of 60 and 70 degrees is optimal and maintains a high degree of specificity.[16] A positive sign with the tilt table test must be taken in context of patient history, with consideration of pertinent clinical findings before coming to a conclusion.
References
- ↑ Reeves, Alexander G. "Chapter 14: Evaluation of the Dizzy Patient". Disorders of the nervous system: a primer. Dartmouth Medical School. Retrieved 2012-01-06. Unknown parameter
|coauthors=
ignored (help) - ↑ Armstead WM (2016). "Cerebral Blood Flow Autoregulation and Dysautoregulation". Anesthesiol Clin. 34 (3): 465–77. doi:10.1016/j.anclin.2016.04.002. PMC 4988341. PMID 27521192.
- ↑ Shen WK, Sheldon RS, Benditt DG, Cohen MI, Forman DE, Goldberger ZD; et al. (2017). "2017 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society". J Am Coll Cardiol. 70 (5): e39–e110. doi:10.1016/j.jacc.2017.03.003. PMID 28286221.
- ↑ 4.0 4.1 4.2 4.3 Task Force for the Diagnosis and Management of Syncope. European Society of Cardiology (ESC). European Heart Rhythm Association (EHRA). Heart Failure Association (HFA). Heart Rhythm Society (HRS). Moya A; et al. (2009). "Guidelines for the diagnosis and management of syncope (version 2009)". Eur Heart J. 30 (21): 2631–71. doi:10.1093/eurheartj/ehp298. PMC 3295536. PMID 19713422.
- ↑ Chen LY, Shen WK, Mahoney DW, Jacobsen SJ, Rodeheffer RJ (2006). "Prevalence of syncope in a population aged more than 45 years". Am J Med. 119 (12): 1088.e1–7. doi:10.1016/j.amjmed.2006.01.029. PMID 17145254.
- ↑ Soteriades ES, Evans JC, Larson MG, Chen MH, Chen L, Benjamin EJ; et al. (2002). "Incidence and prognosis of syncope". N Engl J Med. 347 (12): 878–85. doi:10.1056/NEJMoa012407. PMID 12239256.
- ↑ Kapoor WN (1990). "Evaluation and outcome of patients with syncope". Medicine (Baltimore). 69 (3): 160–75. doi:10.1097/00005792-199005000-00004. PMID 2189056.
- ↑ Sun BC, Emond JA, Camargo CA (2005). "Direct medical costs of syncope-related hospitalizations in the United States". Am J Cardiol. 95 (5): 668–71. doi:10.1016/j.amjcard.2004.11.013. PMID 15721118.
- ↑ Chen LY, Gersh BJ, Hodge DO, Wieling W, Hammill SC, Shen WK (2003). "Prevalence and clinical outcomes of patients with multiple potential causes of syncope". Mayo Clin Proc. 78 (4): 414–20. doi:10.4065/78.4.414. PMID 12683693.
- ↑ Kenny RA (2003). "Syncope in the elderly: diagnosis, evaluation, and treatment". J Cardiovasc Electrophysiol. 14 (9 Suppl): S74–7. doi:10.1046/j.1540-8167.14.s9.8.x. PMID 12950524.
- ↑ Romme JJ, van Dijk N, Boer KR, Dekker LR, Stam J, Reitsma JB; et al. (2008). "Influence of age and gender on the occurrence and presentation of reflex syncope". Clin Auton Res. 18 (3): 127–33. doi:10.1007/s10286-008-0465-0. PMID 18449594.
- ↑ Khoo, C.; Chakrabarti, S.; Arbour, L.; Krahn, AD. (2013). "Recognizing life-threatening causes of syncope". Cardiol Clin. 31 (1): 51–66. doi:10.1016/j.ccl.2012.10.005. PMID 23217687. Unknown parameter
|month=
ignored (help) - ↑ Kapoor, WN. (2000). "Syncope". N Engl J Med. 343 (25): 1856–62. doi:10.1056/NEJM200012213432507. PMID 11117979. Unknown parameter
|month=
ignored (help) - ↑ Nishida, K.; Hirota, SK.; Tokeshi, J. (2008). "Laugh syncope as a rare sub-type of the situational syncopes: a case report". J Med Case Rep. 2: 197. doi:10.1186/1752-1947-2-197. PMID 18538031.
- ↑ Benbadis, SR.; Chichkova, R. (2006). "Psychogenic pseudosyncope: an underestimated and provable diagnosis". Epilepsy Behav. 9 (1): 106–10. doi:10.1016/j.yebeh.2006.02.011. PMID 16697264. Unknown parameter
|month=
ignored (help) - ↑ 16.0 16.1 Natale, A., Akhtar, M., Jazayeri, M., Dhala, A., Blanck, Z., Deshpande, S., et al. (1995). Provocation of Hypotension During Head-Up Tilt Testing in Subjects With No History of Syncope or Presyncop. American Heart Association, (92), 54-58. doi: 10.1161/01.CIR.92.1.54; url: http://circ.ahajournals.org/content/92/1/54.full