Glioma pathophysiology: Difference between revisions

Jump to navigation Jump to search
(Mahshid)
 
(47 intermediate revisions by 3 users not shown)
Line 4: Line 4:


==Overview==
==Overview==
The pathogenesis of cerebral glioma involves invasion of the tumor cells into the adjacent normal brain tissue. Although in certain areas the margin of the tumor may seem to be macroscopically well defined from the brain, there are always microscopic nests of tumor cells extending well out into the brain.<ref name=aaa>Pathology of glioma. http://www.surgwiki.com/wiki/Intracranial_tumours,_infection_and_aneurysms</ref> Genes involved in the pathogenesis of glioma include ''ERCC1'', ''[[ERCC2]]'', ''[[XRCC1]]'', ''MGMT'', ''IDH1'', ''[[IDH2]]'', ''[[p53]]'', ''[[EGFR]]'', ''[[TSC1]]'', ''[[TSC2]]'', ''[[RB1]]'', ''[[APC]]'', ''hMLH1'', ''hMSH2'', ''[[PMS2]]'', ''[[PTEN]]'', ''[[NF1]]'', and ''NF2''.<ref name=ddd>Pathology of glioma. Wikipedia. https://en.wikipedia.org/wiki/Glioma</ref><ref name="pmid16932614">{{cite journal| author=Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M| title=Epidemiology and molecular pathology of glioma. | journal=Nat Clin Pract Neurol | year= 2006 | volume= 2 | issue= 9 | pages= 494-503; quiz 1 p following 516 | pmid=16932614 | doi=10.1038/ncpneuro0289 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16932614  }} </ref> The gross and histopathological appearance of glioma varies with the tumor grade and type.<ref name=ppp>Pathology of pilocytic astrocytoma. Libre Pathology. http://librepathology.org/wiki/index.php/Pilocytic_astrocytoma</ref><ref name=fff>Pathology of gliomas. Libre Pathology. http://librepathology.org/wiki/index.php/Oligodendroglioma</ref><ref name=bbb>Pathology of anaplastic astrocytoma. Libre Pathology. http://librepathology.org/wiki/index.php?title=Neuropathology_tumours&redirect=no#Infiltrative_astrocytomas</ref><ref name=ccc>Pathology of glioblastoma. Libre Pathology. http://librepathology.org/wiki/index.php/Glioblastoma</ref><ref name=vvv>Pathology of ependymoma. Libre Pathology. http://librepathology.org/wiki/index.php/Ependymoma</ref>


==Pathophysiology==
==Pathophysiology==


===Pathogenesis===
===Pathogenesis===
*Pathogenesis of glioma involves [[astrocytes]], members of the [[glia|glial family]]. The cells interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as [[microglia]] and [[endothelial cells]].<ref name="pmid25565956">{{cite journal| author=Dubois LG, Campanati L, Righy C, D'Andrea-Meira I, Spohr TC, Porto-Carreiro I et al.| title=Gliomas and the vascular fragility of the blood brain barrier. | journal=Front Cell Neurosci | year= 2014 | volume= 8 | issue=  | pages= 418 | pmid=25565956 | doi=10.3389/fncel.2014.00418 | pmc=PMC4264502 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25565956  }} </ref>
*The pathogenesis of cerebral glioma involves invasion of the tumor cells into the adjacent normal brain tissue. Although in certain areas the margin of the tumor may seem to be macroscopically well defined from the brain, there are always microscopic nests of tumor cells extending well out into the brain.<ref name=aaa>Pathology of glioma. http://www.surgwiki.com/wiki/Intracranial_tumours,_infection_and_aneurysms</ref>
*Astrocytic projections interact with vessels and act as additional elements of the [[blood brain barrier]] (BBB). Astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the blood brain barrier to ensure survival and continuous growth.
*Astrocytic projections interact with vessels and act as additional elements of the [[blood brain barrier]] (BBB). The tumors take advantage of the blood brain barrier to ensure survival and continuous growth.  
*A glioma can develop into a very aggressive tumor, the glioblastoma multiforme (GBM), characterized by a highly heterogeneous cell population, extensive proliferation and migration.
*Gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood via blood brain barrier is crucial.
*Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue.
*Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue.
*Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral [[edema]].<ref name="pmid25565956">{{cite journal| author=Dubois LG, Campanati L, Righy C, D'Andrea-Meira I, Spohr TC, Porto-Carreiro I et al.| title=Gliomas and the vascular fragility of the blood brain barrier. | journal=Front Cell Neurosci | year= 2014 | volume= 8 | issue=  | pages= 418 | pmid=25565956 | doi=10.3389/fncel.2014.00418 | pmc=PMC4264502 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25565956  }} </ref>
*Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral [[edema]].<ref name="pmid25565956">{{cite journal| author=Dubois LG, Campanati L, Righy C, D'Andrea-Meira I, Spohr TC, Porto-Carreiro I et al.| title=Gliomas and the vascular fragility of the blood brain barrier. | journal=Front Cell Neurosci | year= 2014 | volume= 8 | issue=  | pages= 418 | pmid=25565956 | doi=10.3389/fncel.2014.00418 | pmc=PMC4264502 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25565956  }} </ref>
Line 17: Line 16:
===Genetics===
===Genetics===
Genes involved in the pathogenesis of glioma include:<ref name=ddd>Pathology of glioma. Wikipedia. https://en.wikipedia.org/wiki/Glioma</ref><ref name="pmid16932614">{{cite journal| author=Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M| title=Epidemiology and molecular pathology of glioma. | journal=Nat Clin Pract Neurol | year= 2006 | volume= 2 | issue= 9 | pages= 494-503; quiz 1 p following 516 | pmid=16932614 | doi=10.1038/ncpneuro0289 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16932614  }} </ref>
Genes involved in the pathogenesis of glioma include:<ref name=ddd>Pathology of glioma. Wikipedia. https://en.wikipedia.org/wiki/Glioma</ref><ref name="pmid16932614">{{cite journal| author=Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M| title=Epidemiology and molecular pathology of glioma. | journal=Nat Clin Pract Neurol | year= 2006 | volume= 2 | issue= 9 | pages= 494-503; quiz 1 p following 516 | pmid=16932614 | doi=10.1038/ncpneuro0289 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16932614  }} </ref>
*''ERCC1''
*''ERCC1''
*''[[ERCC2]]''
*''[[ERCC2]]''
Line 38: Line 36:


===Associated Conditions===
===Associated Conditions===
Gliomas may be associated with:<ref name=aaa>{{cite journal|last=Reuss|first=D|author2=von Deimling, A|title=Hereditary tumor syndromes and gliomas.|journal=Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer|year=2009|volume=171|pages=83–102|pmid=19322539|doi=10.1007/978-3-540-31206-2_5}}</ref><ref name="pmid16932614">{{cite journal| author=Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M| title=Epidemiology and molecular pathology of glioma. | journal=Nat Clin Pract Neurol | year= 2006 | volume= 2 | issue= 9 | pages= 494-503; quiz 1 p following 516 | pmid=16932614 | doi=10.1038/ncpneuro0289 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16932614  }} </ref>
Gliomas may be associated with:<ref name="pmid16932614">{{cite journal| author=Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M| title=Epidemiology and molecular pathology of glioma. | journal=Nat Clin Pract Neurol | year= 2006 | volume= 2 | issue= 9 | pages= 494-503; quiz 1 p following 516 | pmid=16932614 | doi=10.1038/ncpneuro0289 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16932614  }} </ref><ref name=xxx>{{cite journal|last=Reuss|first=D|author2=von Deimling, A|title=Hereditary tumor syndromes and gliomas.|journal=Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer|year=2009|volume=171|pages=83–102|pmid=19322539|doi=10.1007/978-3-540-31206-2_5}}</ref>
 
*[[Neurofibromatosis type 1]]
*[[Neurofibromatosis type 1]]
*[[Neurofibromatosis type 2]]
*[[Neurofibromatosis type 2]]
Line 50: Line 47:


===Gross Pathology===
===Gross Pathology===
Gross pathology of glioma differ with the type. The various types of glioma with the distinct gross pathological features include:<ref>Pathology of gliomas. Libre Pathology. http://librepathology.org/wiki/index.php/Oligodendroglioma</ref>
The gross pathological appearance of glioma varies with the tumor grade and type. Common findings are listed below:<ref name=ppp>Pathology of pilocytic astrocytoma. Libre Pathology. http://librepathology.org/wiki/index.php/Pilocytic_astrocytoma</ref><ref name=fff>Pathology of gliomas. Libre Pathology. http://librepathology.org/wiki/index.php/Oligodendroglioma</ref><ref name=bbb>Pathology of anaplastic astrocytoma. Libre Pathology. http://librepathology.org/wiki/index.php?title=Neuropathology_tumours&redirect=no#Infiltrative_astrocytomas</ref><ref name=ccc>Pathology of glioblastoma. Libre Pathology. http://librepathology.org/wiki/index.php/Glioblastoma</ref><ref name=vvv>Pathology of ependymoma. Libre Pathology. http://librepathology.org/wiki/index.php/Ependymoma</ref>


{| style="border: 0px; font-size: 90%; margin: 3px; width: 600px" align=center
{| style="border: 0px; font-size: 90%; margin: 3px; width: 600px" align=center
Line 69: Line 66:
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |
:1. Poorly demarcated tumor
:1. Poorly demarcated tumor
:2. Tumor causing enlargement of the involved portion of the brain and blurring of anatomical landmarks
:2. Tumor mass causing enlargement of the involved portion of the brain and blurring of anatomical landmarks
:3. Commonly located in the [[cerebrum|cerebral hemisphere]]
:3. Commonly located in the [[cerebrum|cerebral hemisphere]]
|-
|-
Line 106: Line 103:




 
====Gallery====
[http://www.peir.net Images shown below are courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology]
[http://www.peir.net Images shown below are courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology]
<br>
<br>
<div align="left">
<div align="left">
<gallery heights="175" widths="175">
<gallery heights="175" widths="175">
Image:Glioma Gross 1.jpg|Brain: Pontine Glioma: Gross; fixed tissue, anterior view of [[brain stem]] and [[cerebellum]] with bosselated tumor adjacent to [[basilar artery]]
Image:Glioma Gross 1.jpg|Brain: Pontine Glioma: Gross; fixed tissue, anterior view of [[brain stem]] and [[cerebellum]] with bosselated tumor adjacent to [[basilar artery]]
Image:Glioma Gross 2.jpg|Brain: Pontine Glioma: Gross; fixed tissue, sagittal section [[brain stem]] and [[cerebellum]]
Image:Glioma Gross 2.jpg|Brain: Pontine Glioma: Gross; fixed tissue, sagittal section [[brain stem]] and [[cerebellum]]
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 3.jpg|Brain: Glioma: Gross; fixed tissue, horizontal section [[brain stem]] and [[cerebellum]] with obvious gelatinous appearing neoplasm a pontine glioma
Image:Glioma Gross 3.jpg|Brain: Glioma: Gross; fixed tissue, horizontal section [[brain stem]] and [[cerebellum]] with obvious gelatinous appearing neoplasm a pontine glioma
Image:Glioma Gross 4.jpg|Brain: Oligodendroglioma: Gross; natural color, large, well circumscribed lesion in left [[frontal lobe]]
Image:Glioma Gross 4.jpg|Brain: Oligodendroglioma: Gross; natural color, large, well circumscribed lesion in left [[frontal lobe]]
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 5.jpg|Brain: Glioma: Gross; fixed tissue, horizontal sections [[brain stem]] and [[cerebellum]] showing large pontine glioma
Image:Glioma Gross 5.jpg|Brain: Glioma: Gross; fixed tissue, horizontal sections [[brain stem]] and [[cerebellum]] showing large pontine glioma
Image:Glioma Gross 6.jpg|Brain: Pontine Glioma and Diffuse Meningeal Gliomatosis: Gross; fixed tissue, view of cerebral hemispheres from inferior with [[brain stem]] and [[cerebellum]] removed. Pontine asymmetry is easily seen due to low grade [[astrocytoma]] and meningeal gliomatosis is easily seen over [[frontal lobe]]s
Image:Glioma Gross 6.jpg|Brain: Pontine Glioma and Diffuse Meningeal Gliomatosis: Gross; fixed tissue, view of cerebral hemispheres from inferior with [[brain stem]] and [[cerebellum]] removed. Pontine asymmetry is easily seen due to low grade [[astrocytoma]] and meningeal gliomatosis is easily seen over [[frontal lobe]]s
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 7.jpg|Brain: Pontine Glioma and Diffuse Meningeal Gliomatosis in 7 yo boy: Gross; fixed tissue, view of cerebral hemispheres from vertex meningeal gliomatosis.
Image:Glioma Gross 7.jpg|Brain: Pontine Glioma and Diffuse Meningeal Gliomatosis in 7 yo boy: Gross; fixed tissue, view of cerebral hemispheres from vertex meningeal gliomatosis.
Image:Glioma Gross 8.jpg|Brain: Pontine Glioma and Diffuse Meningeal Gliomatosis: Gross; in situ dural nodule
Image:Glioma Gross 8.jpg|Brain: Pontine Glioma and Diffuse Meningeal Gliomatosis: Gross; in situ dural nodule
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 9.jpg|Brain: Oligodendroglioma: Gross; fixed tissue, multiple coronal sections, cerebral hemispheres with large tumor and hemorrhage into tumor
Image:Glioma Gross 9.jpg|Brain: Oligodendroglioma: Gross; fixed tissue, multiple coronal sections, cerebral hemispheres with large tumor and hemorrhage into tumor
Image:Glioma Gross 10.jpg|Brain: Oligodendroglioma: Gross; fixed tissue, coronal section, cerebral hemispheres, large hemorrhagic lesion in one hemisphere
Image:Glioma Gross 10.jpg|Brain: Oligodendroglioma: Gross; fixed tissue, coronal section, cerebral hemispheres, large hemorrhagic lesion in one hemisphere
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 11.jpg|Brain: Oligodendroglioma: Gross; fixed tissue, ischemic tissue, anterior to tumor mass
Image:Glioma Gross 11.jpg|Brain: Oligodendroglioma: Gross; fixed tissue, ischemic tissue, anterior to tumor mass
Image:Glioma Gross 12.jpg|Brain: Oligodendroglioma: Gross; natural color, coronal section, cerebral hemispheres, large lesion, left parieto occipital white matter
Image:Glioma Gross 12.jpg|Brain: Oligodendroglioma: Gross; natural color, coronal section, cerebral hemispheres, large lesion, left parieto occipital white matter
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 13.jpg|Brain: Gliomatosis Cerebri: Gross; fixed tissue, coronal sections, cerebral hemispheres, lesion is in temporal lobes and hypothalamus
Image:Glioma Gross 13.jpg|Brain: Gliomatosis Cerebri: Gross; fixed tissue, coronal sections, cerebral hemispheres, lesion is in temporal lobes and hypothalamus
Image:Glioma Gross 14.jpg|Brain: Ventriculitis: Gross; fixed tissue, case of glioma with meningitis, a nice view of ventriculitis in one lateral ventricle
Image:Glioma Gross 14.jpg|Brain: Ventriculitis: Gross; fixed tissue, case of glioma with meningitis, a nice view of ventriculitis in one lateral ventricle
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 15.jpg|Brain: Glioma Thalamic Grade Ii-Iii: Gross; fixed tissue, four coronal sections, cerebral hemispheres, very large hemorrhagic lesion
Image:Glioma Gross 15.jpg|Brain: Glioma Thalamic Grade Ii-Iii: Gross; fixed tissue, four coronal sections, cerebral hemispheres, very large hemorrhagic lesion
Image:Glioma Gross 16.jpg|Brain: Glioma Thalamic Grade Ii-Iii: Gross; fixed tissue, coronal section, cerebral hemispheres with large hemorrhagic lesion
Image:Glioma Gross 16.jpg|Brain: Glioma Thalamic Grade Ii-Iii: Gross; fixed tissue, coronal section, cerebral hemispheres with large hemorrhagic lesion
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 17.jpg|Brain: Glioma Thalamic Grade Ii-Iii: Gross fixed tissue coronal section cerebral hemispheres lesions appears to be in choroid plexus of lateral ventricle in this picture. There is blood in fourth ventricle
Image:Glioma Gross 17.jpg|Brain: Glioma Thalamic Grade Ii-Iii: Gross fixed tissue coronal section cerebral hemispheres lesions appears to be in choroid plexus of lateral ventricle in this picture. There is blood in fourth ventricle
Image:Glioma Gross 18.jpg|Brain: Cerebral Sarcoma or Microglioma: Gross; fixed tissue, coronal section, cerebral hemispheres (58 yo man)
Image:Glioma Gross 18.jpg|Brain: Cerebral Sarcoma or Microglioma: Gross; fixed tissue, coronal section, cerebral hemispheres (58 yo man)
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 19.jpg|Brain: Cerebral Sarcoma or Microglioma: Gross; fixed tissue, coronal section, cerebral hemispheres
Image:Glioma Gross 19.jpg|Brain: Cerebral Sarcoma or Microglioma: Gross; fixed tissue, coronal section, cerebral hemispheres
Image:Glioma Gross 20.jpg|Brain: Cerebral Sarcoma or Microglioma: Gross; fixed tissue, coronal section, cerebral hemispheres
Image:Glioma Gross 20.jpg|Brain: Cerebral Sarcoma or Microglioma: Gross; fixed tissue, coronal section, cerebral hemispheres
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 21.jpg|Brain: Infarct Subcortical: Gross; fixed tissue, close-up view of old small subcortical infarct, a case of microglioma
Image:Glioma Gross 21.jpg|Brain: Infarct Subcortical: Gross; fixed tissue, close-up view of old small subcortical infarct, a case of microglioma
Image:Glioma Gross 22.jpg|Brain: Microglioma: Gross; fixed tissue; [[cerebellum]] and fourth ventricle with periventricular tumor invasion
Image:Glioma Gross 22.jpg|Brain: Microglioma: Gross; fixed tissue; [[cerebellum]] and fourth ventricle with periventricular tumor invasion
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 23.jpg|Brain: Microglioma: Gross fixed tissue horizontal sections cerebellum and brain stem with periventricular neoplastic infiltrate
Image:Glioma Gross 23.jpg|Brain: Microglioma: Gross fixed tissue horizontal sections cerebellum and brain stem with periventricular neoplastic infiltrate
Image:Glioma Gross 24.jpg|Brain: Microglioma: Gross fixed tissue horizontal section midbrain and cerebellum at mid pons level periventricular tumor infiltration
Image:Glioma Gross 24.jpg|Brain: Microglioma: Gross fixed tissue horizontal section midbrain and cerebellum at mid pons level periventricular tumor infiltration
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 25.jpg|Brain: Microglioma: Gross fixed tissue horizontal section rostral pons and cerebellum
Image:Glioma Gross 25.jpg|Brain: Microglioma: Gross fixed tissue horizontal section rostral pons and cerebellum
Image:Glioma Gross 26.jpg|Brain: Microglioma: Gross fixed tissue horizontal section rostral pons and cerebellum periventricular tumor invasion
Image:Glioma Gross 26.jpg|Brain: Microglioma: Gross fixed tissue horizontal section rostral pons and cerebellum periventricular tumor invasion
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 27.jpg|Brain: Microglioma: Gross fixed tissue coronal section cerebral hemispheres with mild ventricular dilation
Image:Glioma Gross 27.jpg|Brain: Microglioma: Gross fixed tissue coronal section cerebral hemispheres with mild ventricular dilation
Image:Glioma Gross 28.jpg|Glioma: Optic Nerve
Image:Glioma Gross 28.jpg|Glioma: Optic Nerve
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 29.jpg|Brain: Oligodendroglioma, Frontal Lobe
Image:Glioma Gross 29.jpg|Brain: Oligodendroglioma, Frontal Lobe
Image:Glioma Gross 30.jpg|Brain: Oligodendroglioma, Mixed Astrocytoma & Oligodendroglioma
Image:Glioma Gross 30.jpg|Brain: Oligodendroglioma, Mixed Astrocytoma & Oligodendroglioma
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 31.jpg|Brain: Oligodendroglioma
Image:Glioma Gross 31.jpg|Brain: Oligodendroglioma
Image:Glioma Gross 32.jpg|Brain: Oligodendroglioma
Image:Glioma Gross 32.jpg|Brain: Oligodendroglioma
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 36.jpg|Brain: Glioma, Grade II Anaplastic
Image:Glioma Gross 36.jpg|Brain: Glioma, Grade II Anaplastic
Image:Glioma Gross 37.jpg|Brain: Glioma, [[Brain stem]], Low Grade
Image:Glioma Gross 37.jpg|Brain: Glioma, [[Brain stem]], Low Grade
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 38.jpg|Fundoscopy: Eye; Optic Nerve Glioma, Optic Nerve
Image:Glioma Gross 38.jpg|Fundoscopy: Eye; Optic Nerve Glioma, Optic Nerve
Image:Glioma Gross 41.jpg|Brain: Glioma, Hypothalamic, Circle Around Region of Tumor
Image:Glioma Gross 41.jpg|Brain: Glioma, Hypothalamic, Circle Around Region of Tumor
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 39.jpg|CNS: Pilocytic Astrocytoma of the Spinal Cord. The fusiform expansion of the spinal cord produced by this pilocytic astrocytoma is not, on external examination alone, distinguishable from that produced by a nonresectable diffuse glioma.
Image:Glioma Gross 39.jpg|CNS: Pilocytic Astrocytoma of the Spinal Cord. The fusiform expansion of the spinal cord produced by this pilocytic astrocytoma is not, on external examination alone, distinguishable from that produced by a nonresectable diffuse glioma.
Image:Glioma Gross 42.jpg|Brain: Glioma, Pontine
Image:Glioma Gross 42.jpg|Brain: Glioma, Pontine
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 43.jpg|Brain: [[Glioblastoma Multiforme]]: Gross fixed tissue close-up large necrotic tumor mass in septum pellucidum
Image:Glioma Gross 43.jpg|Brain: [[Glioblastoma Multiforme]]: Gross fixed tissue close-up large necrotic tumor mass in septum pellucidum
Image:Glioma Gross 44.jpg|Brain: [[Glioblastoma Multiforme]]: Gross fixed tissue coronal section of the brain with a large necrotic tumor mass in septum pellucidum diagnosed as astrocytoma grade III
Image:Glioma Gross 44.jpg|Brain: [[Glioblastoma Multiforme]]: Gross fixed tissue coronal section of the brain with a large necrotic tumor mass in septum pellucidum diagnosed as astrocytoma grade III
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 45.jpg|Brain: [[Glioblastoma Multiforme]]: Gross natural color large hemorrhagic lesion in right centrum semiovale
Image:Glioma Gross 45.jpg|Brain: [[Glioblastoma Multiforme]]: Gross natural color large hemorrhagic lesion in right centrum semiovale
Image:Pilocytic astrocytoma gross.jpg|CNS: Malignant pilocytic astrocytoma: A 29-year-old woman died 2 years after a diagnosis of "atypical pilocytic astrocytoma" of the pineal region. At autopsy, multiple tumor implants were present in the craniospinal subarachnoid spaces.
Image:Pilocytic astrocytoma gross.jpg|CNS: Malignant pilocytic astrocytoma: A 29-year-old woman died 2 years after a diagnosis of "atypical pilocytic astrocytoma" of the pineal region. At autopsy, multiple tumor implants were present in the craniospinal subarachnoid spaces.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioma Gross 33.jpg|Brain: Oligodendroglioma; Ventricular Cobblestone Effect
Image:Glioma Gross 33.jpg|Brain: Oligodendroglioma; Ventricular Cobblestone Effect
</gallery>
</gallery>
Line 284: Line 155:


===Microscopic Pathology===
===Microscopic Pathology===
Microscopic pathology of glioma differ with the type. The various types of glioma with the distinct microscopic histopathological features include:<ref>Pathology of gliomas. Libre Pathology. http://librepathology.org/wiki/index.php/Oligodendroglioma</ref>
The histopathological appearance of glioma varies with the tumor grade and type, with increasing cellular [[atypia]], [[mitoses]], [[endothelial cell]] proliferation, and [[necrosis]]. Common findings are listed below:<ref name=ppp>Pathology of pilocytic astrocytoma. Libre Pathology. http://librepathology.org/wiki/index.php/Pilocytic_astrocytoma</ref><ref name=fff>Pathology of gliomas. Libre Pathology. http://librepathology.org/wiki/index.php/Oligodendroglioma</ref><ref name=bbb>Pathology of anaplastic astrocytoma. Libre Pathology. http://librepathology.org/wiki/index.php?title=Neuropathology_tumours&redirect=no#Infiltrative_astrocytomas</ref><ref name=ccc>Pathology of glioblastoma. Libre Pathology. http://librepathology.org/wiki/index.php/Glioblastoma</ref><ref name=vvv>Pathology of ependymoma. Libre Pathology. http://librepathology.org/wiki/index.php/Ependymoma</ref>


{| style="border: 0px; font-size: 90%; margin: 3px; width: 600px" align=center
{| style="border: 0px; font-size: 90%; margin: 3px; width: 600px" align=center
Line 290: Line 161:
|+
|+
! style="background: #4479BA; width: 200px;" | {{fontcolor|#FFF|Type of glioma}}
! style="background: #4479BA; width: 200px;" | {{fontcolor|#FFF|Type of glioma}}
! style="background: #4479BA; width: 400px;" | {{fontcolor|#FFF|Microscopic histopathological features}}
! style="background: #4479BA; width: 400px;" | {{fontcolor|#FFF|Histopathological features}}
|-
|-
| style="padding: 5px 5px; background: #DCDCDC; font-weight: bold" |
| style="padding: 5px 5px; background: #DCDCDC; font-weight: bold" |
Line 299: Line 170:
:*Fibrillar
:*Fibrillar
:* Microcystic
:* Microcystic
:3. Hair-like fibres best observed on smear or with [[GFAP]]
:3. Hair-like fibers best observed on smear or with [[GFAP]]
:4. Rosenthal fibres
:4. Rosenthal fibers
:5. Eosinophilic granular bodies
:5. Eosinophilic granular bodies
:6. Microvascular proliferation
:6. Microvascular proliferation
Line 358: Line 229:




 
====Gallery====
[http://www.peir.net Images shown below are courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology]
[http://www.peir.net Images shown below are courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology]
<br>
<br>
<div align="left">
<div align="left">
<gallery heights="225" widths="225">
<gallery heights="225" widths="225">
Image:Pilocytic astrocytoma 1.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. As illustrated, many lesions are composed largely of spongy tissue rich in microcysts. Characteristic of [[pilocytic astrocytoma]]s in general, the lesion is largely a solid mass of neoplastic cells without an obvious background of infiltrated brain.
Image:Pilocytic astrocytoma 1.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. As illustrated, many lesions are composed largely of spongy tissue rich in microcysts. Characteristic of [[pilocytic astrocytoma]]s in general, the lesion is largely a solid mass of neoplastic cells without an obvious background of infiltrated brain.
Image:Pilocytic astrocytoma 2.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. The perivascular radiating processes in some lesions can create a likeness to an [[ependymoma]]. Note the spongy background unusual for [[ependymoma]]s.
Image:Pilocytic astrocytoma 2.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. The perivascular radiating processes in some lesions can create a likeness to an [[ependymoma]]. Note the spongy background unusual for [[ependymoma]]s.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Pilocytic astrocytoma 3.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Other [[pilocytic astrocytoma]]s are solid, rather than microcystic, and may be lobular.
Image:Pilocytic astrocytoma 3.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Other [[pilocytic astrocytoma]]s are solid, rather than microcystic, and may be lobular.
Image:Pilocytic astrocytoma 4.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Rosenthal fibers, usually confined to the solid rather than spongy regions are found in many pilocytic [[astrocytoma]]s, but are not requisite for the diagnosis.
Image:Pilocytic astrocytoma 4.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Rosenthal fibers, usually confined to the solid rather than spongy regions are found in many pilocytic [[astrocytoma]]s, but are not requisite for the diagnosis.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Pilocytic astrocytoma 15.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Rosenthal fibers are extremely abundant in some lesions. Particularly in the [[cerebellum]], it can be difficult to distinguish such solid, paucicellular, highly fibrillar [[pilocytic astrocytoma]]s from reactive gliosis with abundant Rosenthal fiber formation.
Image:Pilocytic astrocytoma 15.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Rosenthal fibers are extremely abundant in some lesions. Particularly in the [[cerebellum]], it can be difficult to distinguish such solid, paucicellular, highly fibrillar [[pilocytic astrocytoma]]s from reactive gliosis with abundant Rosenthal fiber formation.
Image:Pilocytic astrocytoma 16.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. A loose array of polar cells creates an additional variant of pilocytic [[astrocytoma]].
Image:Pilocytic astrocytoma 16.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. A loose array of polar cells creates an additional variant of pilocytic [[astrocytoma]].
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Pilocytic astrocytoma 7.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Some pilocytic [[astrocytoma]]s are traversed by prominent collagenous septa.
Image:Pilocytic astrocytoma 7.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Some pilocytic [[astrocytoma]]s are traversed by prominent collagenous septa.
Image:Pilocytic astrocytoma 8.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Unusual pilocytic [[astrocytoma]]s have an extensive mucinous background without microcysts.
Image:Pilocytic astrocytoma 8.jpg|CNS: [[Pilocytic astrocytoma]]: variations in histologic appearance. Unusual pilocytic [[astrocytoma]]s have an extensive mucinous background without microcysts.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Comparison.jpg|CNS: Comparison of normal [[optic nerve]] and [[pilocytic astrocytoma]] of the [[optic nerve]]. These two figures compare, at the same magnification, the normal [[optic nerve]] (left) with one containing a [[pilocytic astrocytoma]] (right). The [[neoplasm]] enlarges the compartments of the [[nerve]] and extends in collar-like fashion into the [[subarachnoid]] space.
Image:Comparison.jpg|CNS: Comparison of normal [[optic nerve]] and [[pilocytic astrocytoma]] of the [[optic nerve]]. These two figures compare, at the same magnification, the normal [[optic nerve]] (left) with one containing a [[pilocytic astrocytoma]] (right). The [[neoplasm]] enlarges the compartments of the [[nerve]] and extends in collar-like fashion into the [[subarachnoid]] space.
Image:Pilocytic astrocytoma 9.jpg|CNS: [[Pilocytic astrocytoma]]; The "hair cells" for which this lesion is named are readily seen.
Image:Pilocytic astrocytoma 9.jpg|CNS: [[Pilocytic astrocytoma]]; The "hair cells" for which this lesion is named are readily seen.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Pilocytic astrocytoma 10.jpg|CNS: [[Pilocytic astrocytoma]]; Nuclear hyperchromasia and [[pleomorphism]] are common. Note the typical cellular elongation, and, at the center of the illustration, the [[eosinophil]]ic granular body that populates [[pilocytic astrocytoma]]s and certain other slowly growing gliomas.
Image:Pilocytic astrocytoma 10.jpg|CNS: [[Pilocytic astrocytoma]]; Nuclear hyperchromasia and [[pleomorphism]] are common. Note the typical cellular elongation, and, at the center of the illustration, the [[eosinophil]]ic granular body that populates [[pilocytic astrocytoma]]s and certain other slowly growing gliomas.
Image:Pilocytic astrocytoma 11.jpg|CNS: [[Pilocytic astrocytoma]]; Intracytoplasmic Rosenthal fibers are prominent in some pilocytic [[neoplasm]]s.
Image:Pilocytic astrocytoma 11.jpg|CNS: [[Pilocytic astrocytoma]]; Intracytoplasmic Rosenthal fibers are prominent in some pilocytic [[neoplasm]]s.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Malignant ependymoma.jpg|Brain: [[Malignant]] [[ependymoma]]: Micro med mag H&E tumor cells.
Image:Malignant ependymoma.jpg|Brain: [[Malignant]] [[ependymoma]]: Micro med mag H&E tumor cells.
Image:Oligodendroglioma 2.jpg|CNS: [[Oligodendroglioma]]; Occasional [[oligodendroglioma]]s contain cells with minute, refractile [[eosinophil]]ic bodies representing miniature Rosenthal fibers.
Image:Oligodendroglioma 2.jpg|CNS: [[Oligodendroglioma]]; Occasional [[oligodendroglioma]]s contain cells with minute, refractile [[eosinophil]]ic bodies representing miniature Rosenthal fibers.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Oligodendroglioma 1.jpg|CNS: [[Oligodendroglioma]]; The cells of some [[oligodendroglioma]]s acquire sufficient [[cytoplasm]] and process formation to become decidedly astrocytic, but their nuclei retain the roundness, uniformity, and chromatin distribution typical of [[oligodendroglioma]].
Image:Oligodendroglioma 1.jpg|CNS: [[Oligodendroglioma]]; The cells of some [[oligodendroglioma]]s acquire sufficient [[cytoplasm]] and process formation to become decidedly astrocytic, but their nuclei retain the roundness, uniformity, and chromatin distribution typical of [[oligodendroglioma]].
Image:Anaplastic oligodendroglioma.jpg|[[Anaplastic]] [[oligodendroglioma]]: [[Anaplastic]] [[oligodendroglioma]]s are highly cellular and associated with vascular proliferation.
Image:Anaplastic oligodendroglioma.jpg|[[Anaplastic]] [[oligodendroglioma]]: [[Anaplastic]] [[oligodendroglioma]]s are highly cellular and associated with vascular proliferation.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Oligodendroglioma frozen.jpg|CNS: [[Oligodendroglioma]] (frozen section); [[Oligodendroglioma]]s in frozen sections lack the distinctive halos so often seen in permanent sections. Cellular monomorphism and infiltration of [[cerebral cortex]] with perineuronal satellitosis suggest the correct diagnosis.
Image:Oligodendroglioma frozen.jpg|CNS: [[Oligodendroglioma]] (frozen section); [[Oligodendroglioma]]s in frozen sections lack the distinctive halos so often seen in permanent sections. Cellular monomorphism and infiltration of [[cerebral cortex]] with perineuronal satellitosis suggest the correct diagnosis.
Image:Clear cell ependymoma.jpg|CNS: Clear cell [[ependymoma]]; Perinuclear clearing similar to that seen in [[oligodendroglioma]]s is a prominent feature of the clear cell variant. Note the vague perivascular pseudorosettes. The lesion was a discrete occipital intraventricular mass.
Image:Clear cell ependymoma.jpg|CNS: Clear cell [[ependymoma]]; Perinuclear clearing similar to that seen in [[oligodendroglioma]]s is a prominent feature of the clear cell variant. Note the vague perivascular pseudorosettes. The lesion was a discrete occipital intraventricular mass.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioblastoma multiforme 1.jpg|CNS: [[Glioblastoma multiforme]]; Brain: [[Glioblastoma multiforme]]. Grade I-Ii: Micro med mag with H&E, [[tumor]] well shown
Image:Glioblastoma multiforme 1.jpg|CNS: [[Glioblastoma multiforme]]; Brain: [[Glioblastoma multiforme]]. Grade I-Ii: Micro med mag with H&E, [[tumor]] well shown
Image:Glioblastoma multiforme 2.jpg|CNS: [[Glioblastoma multiforme]] arising in an [[astrocytoma]]. At higher magnification, gemistocytic [[astrocytoma]] with microcystic change is apparent at the bottom of the illustration and cellular nodules of [[glioblastoma multiforme]] are seen at the top. The 6-year history of symptoms attested to the initially low-grade nature of this astrocytic tumor.
Image:Glioblastoma multiforme 2.jpg|CNS: [[Glioblastoma multiforme]] arising in an [[astrocytoma]]. At higher magnification, gemistocytic [[astrocytoma]] with microcystic change is apparent at the bottom of the illustration and cellular nodules of [[glioblastoma multiforme]] are seen at the top. The 6-year history of symptoms attested to the initially low-grade nature of this astrocytic tumor.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioblastoma multiforme 103.jpg|CNS: [[Glioblastoma multiforme]]; Characteristic of most [[glioblastoma]]s are small cells with elongated nuclei and bipolar processes. As here, the [[chromatin]] is generally not markedly dense nor are nucleoli usually prominent.
Image:Glioblastoma multiforme 103.jpg|CNS: [[Glioblastoma multiforme]]; Characteristic of most [[glioblastoma]]s are small cells with elongated nuclei and bipolar processes. As here, the [[chromatin]] is generally not markedly dense nor are nucleoli usually prominent.
Image:Glioblastoma multiforme 104.jpg|CNS: [[Glioblastoma multiforme]]; Vascular proliferation, a common feature of glioblastoma, produces tufts which often grow directionally. Here, as is often the case, they are oriented toward a focus of necrosis (top right).
Image:Glioblastoma multiforme 104.jpg|CNS: [[Glioblastoma multiforme]]; Vascular proliferation, a common feature of glioblastoma, produces tufts which often grow directionally. Here, as is often the case, they are oriented toward a focus of necrosis (top right).
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioblastoma multiforme 105.jpg|CNS: [[Glioblastoma multiforme]]; At high magnification, the neovascular tuft is a mass which, as can be confirmed by immunohistochemistry, is formed of both endothelial cells and smooth muscle cells (pericytes).
Image:Glioblastoma multiforme 105.jpg|CNS: [[Glioblastoma multiforme]]; At high magnification, the neovascular tuft is a mass which, as can be confirmed by immunohistochemistry, is formed of both endothelial cells and smooth muscle cells (pericytes).
Image:Glioblastoma multiforme 106.jpg|CNS: [[Glioblastoma multiforme]]; In many instances, [[necrosis]] is surrounded by a distinctive collar of cells, which are often smaller than those in surrounding neoplastic tissue. The phenomenon is referred to as pseudopalisading.
Image:Glioblastoma multiforme 106.jpg|CNS: [[Glioblastoma multiforme]]; In many instances, [[necrosis]] is surrounded by a distinctive collar of cells, which are often smaller than those in surrounding neoplastic tissue. The phenomenon is referred to as pseudopalisading.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Cerebrospinal dissemination of glioblastoma multiforme 1.jpg|CNS: Cerebrospinal dissemination of glioblastoma multiforme; As seen at low (left) and high (right) magnification, the small undifferentiated-appearing cells of this glioblastoma are drop metastases colonizing the nerve roots of the cauda equina.
Image:Cerebrospinal dissemination of glioblastoma multiforme 1.jpg|CNS: Cerebrospinal dissemination of glioblastoma multiforme; As seen at low (left) and high (right) magnification, the small undifferentiated-appearing cells of this glioblastoma are drop metastases colonizing the nerve roots of the cauda equina.
Image:Cerebrospinal dissemination of glioblastoma multiforme 2.jpg|CNS: Cerebrospinal dissemination of glioblastoma multiforme; As seen at low (left) and high (right) magnification, the small undifferentiated-appearing cells of this glioblastoma are drop metastases colonizing the nerve roots of the cauda equina.
Image:Cerebrospinal dissemination of glioblastoma multiforme 2.jpg|CNS: Cerebrospinal dissemination of glioblastoma multiforme; As seen at low (left) and high (right) magnification, the small undifferentiated-appearing cells of this glioblastoma are drop metastases colonizing the nerve roots of the cauda equina.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioblastoma multiforme 116.jpg|CNS: [[Glioblastoma multiforme]]; Higher magnification reveals the small cell nature of such tumors.
Image:Glioblastoma multiforme 116.jpg|CNS: [[Glioblastoma multiforme]]; Higher magnification reveals the small cell nature of such tumors.
Image:Glioblastoma multiforme 117.jpg|CNS: [[Glioblastoma multiforme]]; Some glioblastomas are especially infiltrative of the cerebral cortex where subpial, perivascular, and perineuronal accumulations are prominent.
Image:Glioblastoma multiforme 117.jpg|CNS: [[Glioblastoma multiforme]]; Some glioblastomas are especially infiltrative of the cerebral cortex where subpial, perivascular, and perineuronal accumulations are prominent.
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioblastoma multiforme 126.jpg|CNS: [[Glioblastoma multiforme]]; Although this densely cellular and largely undifferentiated lesion technically merits a diagnosis of [[anaplastic]] [[astrocytoma]], it is, for practical purposes, a glioblastoma.
Image:Glioblastoma multiforme 126.jpg|CNS: [[Glioblastoma multiforme]]; Although this densely cellular and largely undifferentiated lesion technically merits a diagnosis of [[anaplastic]] [[astrocytoma]], it is, for practical purposes, a glioblastoma.
Image:Glioblastoma multiforme malignant astrocytoma 1.jpg|Brain: [[Glioblastoma multiforme]] [[malignant]] [[astrocytoma]]
Image:Glioblastoma multiforme malignant astrocytoma 1.jpg|Brain: [[Glioblastoma multiforme]] [[malignant]] [[astrocytoma]]
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioblastoma multiforme pallisading.jpg|Brain: [[Glioblastoma multiforme]]; pallisading
Image:Glioblastoma multiforme pallisading.jpg|Brain: [[Glioblastoma multiforme]]; pallisading
Image:Glioblastoma multiforme vascular proliferation.jpg|Brain: [[Glioblastoma multiforme]]; vascular proliferation
Image:Glioblastoma multiforme vascular proliferation.jpg|Brain: [[Glioblastoma multiforme]]; vascular proliferation
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioblastoma multiforme extravasated blood.jpg|Brain: [[Glioblastoma multiforme]]; Plump and juicy [[endothelial cell]]s, extravasated blood
Image:Glioblastoma multiforme extravasated blood.jpg|Brain: [[Glioblastoma multiforme]]; Plump and juicy [[endothelial cell]]s, extravasated blood
Image:Glioblastoma multiforme perivascular lymphocytes.jpg|Brain: [[Glioblastoma multiforme]]; perivascular [[lymphocyte]]s
Image:Glioblastoma multiforme perivascular lymphocytes.jpg|Brain: [[Glioblastoma multiforme]]; perivascular [[lymphocyte]]s
</gallery>
</div>
<div align="left">
<gallery heights="225" widths="225">
Image:Glioblastoma multiforme thrombosed vessel.jpg|Brain: [[Glioblastoma multiforme]]; thrombosed vessel
Image:Glioblastoma multiforme thrombosed vessel.jpg|Brain: [[Glioblastoma multiforme]]; thrombosed vessel
Image:Hemosiderin in glioblastoma.jpg|Brain: [[Glioblastoma multiforme]]; [[Hemosiderin]] in glioblastoma
Image:Hemosiderin in glioblastoma.jpg|Brain: [[Glioblastoma multiforme]]; [[Hemosiderin]] in glioblastoma
Line 513: Line 283:
{{WikiDoc Help Menu}}
{{WikiDoc Help Menu}}
{{WikiDoc Sources}}
{{WikiDoc Sources}}
[[Category:Up-To-Date]]
[[Category:Oncology]]
[[Category:Medicine]]
[[Category:Neurology]]
[[Category:Neurosurgery]]
[[Category:Up-To-Date]]
[[Category:Oncology]]
[[Category:Medicine]]
[[Category:Neurology]]
[[Category:Neurosurgery]]

Latest revision as of 01:45, 27 November 2017

Glioma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Glioma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Glioma pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Glioma pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Glioma pathophysiology

CDC on Glioma pathophysiology

Glioma pathophysiology in the news

Blogs on Glioma pathophysiology

Directions to Hospitals Treating Glioma

Risk calculators and risk factors for Glioma pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2], Sujit Routray, M.D. [3]

Overview

The pathogenesis of cerebral glioma involves invasion of the tumor cells into the adjacent normal brain tissue. Although in certain areas the margin of the tumor may seem to be macroscopically well defined from the brain, there are always microscopic nests of tumor cells extending well out into the brain.[1] Genes involved in the pathogenesis of glioma include ERCC1, ERCC2, XRCC1, MGMT, IDH1, IDH2, p53, EGFR, TSC1, TSC2, RB1, APC, hMLH1, hMSH2, PMS2, PTEN, NF1, and NF2.[2][3] The gross and histopathological appearance of glioma varies with the tumor grade and type.[4][5][6][7][8]

Pathophysiology

Pathogenesis

  • The pathogenesis of cerebral glioma involves invasion of the tumor cells into the adjacent normal brain tissue. Although in certain areas the margin of the tumor may seem to be macroscopically well defined from the brain, there are always microscopic nests of tumor cells extending well out into the brain.[1]
  • Astrocytic projections interact with vessels and act as additional elements of the blood brain barrier (BBB). The tumors take advantage of the blood brain barrier to ensure survival and continuous growth.
  • Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue.
  • Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema.[9]

Genetics

Genes involved in the pathogenesis of glioma include:[2][3]

Associated Conditions

Gliomas may be associated with:[3][10]

Gross Pathology

The gross pathological appearance of glioma varies with the tumor grade and type. Common findings are listed below:[4][5][6][7][8]

Type of glioma Gross pathological features

Pilocytic astrocytoma

1. Well-circumscribed cystic tumor
2. Solid mural nodule
3. Commonly located in the cerebellum

Low-grade astrocytoma

1. Poorly demarcated tumor
2. Tumor mass causing enlargement of the involved portion of the brain and blurring of anatomical landmarks
3. Commonly located in the cerebral hemisphere

Anaplastic astrocytoma

1. Spongy or gelationous mass
2. Ill defined borders
3. Microcysts
4. Calcification
5. Commonly located in frontal lobe, temporal lobe, brain stem, or spinal cord

Glioblastoma multiforme

1. Poorly-marginated, diffusely infiltrating tumor
2. Firm or gelatinous in consistency
3. Central necrotic core
4. Commonly located in the frontal and temporal lobe

Oligodendroglioma

1. Well circumscribed tumor
2. Pinkish-white in color
3. Mucinous changes
4. Commonly located in the frontal lobe, followed by parietal and temporal lobes

Ependymoma

1. Well-differentiated tumor
2. Exophytic pattern of growth
3. Commonly located at the fourth ventricle and filum terminale


Gallery

Images shown below are courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology

Microscopic Pathology

The histopathological appearance of glioma varies with the tumor grade and type, with increasing cellular atypia, mitoses, endothelial cell proliferation, and necrosis. Common findings are listed below:[4][5][6][7][8]

Type of glioma Histopathological features

Pilocytic astrocytoma

1. Low cellularity without mitoses or anaplasia
2. Classically biphasic
  • Fibrillar
  • Microcystic
3. Hair-like fibers best observed on smear or with GFAP
4. Rosenthal fibers
5. Eosinophilic granular bodies
6. Microvascular proliferation
7. Focal pseudopalisading necrosis

Low-grade astrocytoma

1. Stellate, spindle-shaped tumor cells with fiber like processes
2. Large eosinophilic cytoplasmic mass
3. Forms microcysts

Anaplastic astrocytoma

1. Astrocytic tumor cells with:

Glioblastoma multiforme

1. Astrocytic tumor cells with:

Oligodendroglioma

1. Diffusely growing tumor
2. Highly cellular lesion resembling fried eggs with:

Ependymoma

1. Tadpole-shaped cells resembling an ice cream cone
2. Nuclear features monotonous, i.e. "boring"
  • Little variation in size, shape, and staining
3. Rosettes: circular nuclear free zones/cells arranged in a pseudoglandular fashion (2 types)
  • Perivascular pseudorosettes: tumor cells arranged around a blood vessel; nuclei of cells distant from the blood vessel, i.e. rim of cytoplasm (from tumor cells) surrounding blood vessel (nucleus-free zone). More common than ependymal rosette but less specific
  • Ependymal rosette (true ependymal rosette): rosette has an empty space at the centre


Gallery

Images shown below are courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology

References

  1. 1.0 1.1 Pathology of glioma. http://www.surgwiki.com/wiki/Intracranial_tumours,_infection_and_aneurysms
  2. 2.0 2.1 Pathology of glioma. Wikipedia. https://en.wikipedia.org/wiki/Glioma
  3. 3.0 3.1 3.2 Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006). "Epidemiology and molecular pathology of glioma". Nat Clin Pract Neurol. 2 (9): 494–503, quiz 1 p following 516. doi:10.1038/ncpneuro0289. PMID 16932614.
  4. 4.0 4.1 4.2 Pathology of pilocytic astrocytoma. Libre Pathology. http://librepathology.org/wiki/index.php/Pilocytic_astrocytoma
  5. 5.0 5.1 5.2 Pathology of gliomas. Libre Pathology. http://librepathology.org/wiki/index.php/Oligodendroglioma
  6. 6.0 6.1 6.2 Pathology of anaplastic astrocytoma. Libre Pathology. http://librepathology.org/wiki/index.php?title=Neuropathology_tumours&redirect=no#Infiltrative_astrocytomas
  7. 7.0 7.1 7.2 Pathology of glioblastoma. Libre Pathology. http://librepathology.org/wiki/index.php/Glioblastoma
  8. 8.0 8.1 8.2 Pathology of ependymoma. Libre Pathology. http://librepathology.org/wiki/index.php/Ependymoma
  9. Dubois LG, Campanati L, Righy C, D'Andrea-Meira I, Spohr TC, Porto-Carreiro I; et al. (2014). "Gliomas and the vascular fragility of the blood brain barrier". Front Cell Neurosci. 8: 418. doi:10.3389/fncel.2014.00418. PMC 4264502. PMID 25565956.
  10. Reuss, D; von Deimling, A (2009). "Hereditary tumor syndromes and gliomas". Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer. 171: 83–102. doi:10.1007/978-3-540-31206-2_5. PMID 19322539.


Template:WikiDoc Sources