SARS-CoV-2: Difference between revisions

Jump to navigation Jump to search
 
(36 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Editor-In-Chief:''' [[User:C Michael Gibson|C. Michael Gibson, M.S., M.D.]] [[Mailto:charlesmichaelgibson@gmail.com|[1]]]; '''Associate Editor(s)-in-Chief:''' Syed Ali Rizvi M.B;B.S<br />
__NOTOC__
{{COVID-19}}
 
'''Editor-In-Chief:''' [[User:C Michael Gibson|C. Michael Gibson, M.S., M.D.]] [[Mailto:charlesmichaelgibson@gmail.com|[1]]]; '''Associate Editor(s)-in-Chief:''' {{Syed rizvi}}
==Overview==
==Overview==
The  Coronavirus disease-2019 ([[COVID-19]]), is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 forms a distinct lineage with Bat-SARS-like coronaviruses . The virus is closely related (96.3%) to bat coronavirus RaTG13, based on [[phylogenetic]] analysis, that belong to the order [[Nidovirales]], family [[Coronaviridae]], genus Betacoronavirus, and subgenus Sarbecovirus <ref name="ZhouYang20202">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>. Coronaviruses are [[Enveloped virus|enveloped]], single-stranded RNA viruses that can infect a wide range of hosts including avian, wild, domestic mammalian species, and humans. Coronaviruses are well known for their ability to mutate rapidly, alter tissue tropism, cross the species barrier, and adapt to different epidemiological situations.<ref name="pmid20031041">{{cite journal |vauthors=Decaro N, Mari V, Elia G, Addie DD, Camero M, Lucente MS, Martella V, Buonavoglia C |title=Recombinant canine coronaviruses in dogs, Europe |journal=Emerging Infect. Dis. |volume=16 |issue=1 |pages=41–7 |date=January 2010 |pmid=20031041 |pmc=2874359 |doi=10.3201/eid1601.090726 |url=}}</ref> Six human coronaviruses have been reported since the 1960s; OC43, 229E, NL63, HKU1, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV. First case of COVID-19 was reported in Wuhan, Hubei province, China, in December 2019, associated with the Huanan Seafood Wholesale Market. On March 11, 2020 the Novel Coronavirus Disease, COVID-19, was declared a [[pandemic]] by the World Health Organization
The  [[COVID-19|Coronavirus disease-2019]] ([[COVID-19]]), is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 forms a distinct lineage with bat [[SARS]]-like [[Coronavirus|coronaviruses]] . The virus is closely related (96.3%) to bat coronavirus RaTG13, based on [[phylogenetic]] analysis, that belong to the order [[Nidovirales]], family [[Coronaviridae]], genus Betacoronavirus, and subgenus Sarbecovirus . Coronaviruses are [[Enveloped virus|enveloped]], single-stranded [[RNA virus|RNA viruses]] that can infect a wide range of hosts including avian, wild, domestic mammalian species, and humans. [[Coronavirus|Coronaviruses]] are well known for their ability to [[Mutation|mutate]] rapidly, alter [[tissue tropism]], cross the species barrier, and adapt to different [[Epidemiology|epidemiological]] situations. Six human [[coronaviruses]] have been reported since the 1960s; OC43, 229E, NL63, HKU1, severe acute respiratory syndrome coronavirus ([[SARS-CoV]]) and [[Middle East respiratory syndrome coronavirus infection|Middle East respiratory syndrome coronavirus]] ([[MERS-CoV]]). First case of [[COVID-19]] was reported in Wuhan, Hubei province, China, in December 2019, associated with the Huanan Seafood Wholesale Market. On March 11, 2020 the [[COVID-19|Novel Coronavirus Disease]], [[COVID-19]], was declared a [[pandemic]] by the World Health Organization
<br />
<br />
==Taxonomy ==
==Taxonomy ==
[[File:SARS-CoV-2.jpg|thumb|723x723px|SARS-CoV-2 Structural proteins and their functions]]
<br />


*
*
Line 19: Line 20:
*
*


*SARS-CoV-2 belong to the order [[Nidovirales|nidovirale]], family [[coronaviridae]].
*SARS-CoV-2 belong to the order [[Nidovirales|nidovirale]], family [[coronaviridae]].<ref name="ZhouYang2020">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>
*[[Coronaviridae]] is classified into two subfamilies.
*[[Coronaviridae]] is classified into two subfamilies.
**Torovirinae
**Torovirinae
**Coronavirinae
**Coronavirinae
*Coronavirinae is further classified on the basis of phylogenetic analysis and genome structure into four genera:
*Coronavirinae is further classified on the basis of [[Phylogenetics|phylogenetic]] analysis and [[genome]] structure into four genera:
**Alpha coronavirus (αCoV).
**Alpha coronavirus (αCoV).
**Beta coronavirus (βCoV).
**Beta coronavirus (βCoV).
**Gamma coronavirus (γCoV).
**Gamma coronavirus (γCoV).
**Delta coronavirus (δCoV), which contain 17, 12, 2, and 7 unique species, respectively (ICTV 2018).
**Delta coronavirus (δCoV), which contain 17, 12, 2, and 7 unique species, respectively (ICTV 2018).
*CoV-2 falls under beta coronavirus.
*__NOTOC__CoV-2 falls under beta coronavirus.


[[File:Taxonomy of CoV-2.jpg|center|thumb|400x400px]]
{| border="1" cellpadding="5" cellspacing="0" align="center" |class="wikitable"
 
|+
<br />
!style="background:#efefef;" |Stuructural Protein
==Biology ==
!style="background:#efefef;" |Function of protein
===Structure===
|-
 
|Spike (S) Protein
*Coronaviruses are [[Viral envelope|enveloped]], icosahedral symmetric particles, approximately 80–220 nm in diameter containing a non-segmented, single-strand, positive-sense RNA genome of about 26–32 kb in size. <ref name="pmid16339739">{{cite journal |vauthors=Weiss SR, Navas-Martin S |title=Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus |journal=Microbiol. Mol. Biol. Rev. |volume=69 |issue=4 |pages=635–64 |date=December 2005 |pmid=16339739 |pmc=1306801 |doi=10.1128/MMBR.69.4.635-664.2005 |url=}}</ref>
|Critical for binding to host cell receptor (ACE-2 receptor) and facilitate entry to host cell.<ref name="MathewsonBishop2008">{{cite journal|last1=Mathewson|first1=Alison C.|last2=Bishop|first2=Alexandra|last3=Yao|first3=Yongxiu|last4=Kemp|first4=Fred|last5=Ren|first5=Junyuan|last6=Chen|first6=Hongying|last7=Xu|first7=Xiaodong|last8=Berkhout|first8=Ben|last9=van der Hoek|first9=Lia|last10=Jones|first10=Ian M.|title=Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2|journal=
*Corona in Latin means crown, and this name was attributed to the virus due to the presence of spike projections from the virus [[Viral envelope|envelope]] that give it the shape of a crown under the electron microscope.
Journal of General Virology
* Nido means nest and refers to the ability of the viruses of this order to make a nested set of subgenomic [[mRNA]]
|volume=89|issue=11|year=2008|pages=2741–2745|issn=0022-1317|doi=10.1099/vir.0.2008/003962-0}}</ref><ref name="pmid14647384">{{cite journal |vauthors=Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M |title=Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus |journal=Nature |volume=426 |issue=6965 |pages=450–4 |date=November 2003 |pmid=14647384 |pmc=7095016 |doi=10.1038/nature02145 |url=}}</ref>
 
|-
'''Envelope'''
|Envelope (E) Protein
|[[Viral envelope|Envelope (E) protein]] is a small, integral membrane protein involved in several aspects of the [[virus]]’ life cycle, such as assembly,
budding, envelope formation, and [[pathogenesis]].<ref name="SchoemanFielding20194">{{cite journal|last1=Schoeman|first1=Dewald|last2=Fielding|first2=Burtram C.|title=Coronavirus envelope protein: current knowledge|journal=Virology Journal|volume=16|issue=1|year=2019|issn=1743-422X|doi=10.1186/s12985-019-1182-0}}</ref>
|-
|Membrane (M) Protein
|Membrane (M) protein is a component of the [[viral envelope]] that plays a central role in [[virus]]
[[morphogenesis]] and assembly via its interactions with other viral proteins<ref name="FehrPerlman2015">{{cite journal|last1=Fehr|first1=Anthony R.|last2=Perlman|first2=Stanley|title=Coronaviruses: An Overview of Their Replication and Pathogenesis|volume=1282|year=2015|pages=1–23|issn=1064-3745|doi=10.1007/978-1-4939-2438-7_1}}</ref>
|-
|Nucleocapsid (N) Protein
|[[Nucleocapsid]] (N) protein is to package the viral RNA genome within the [[viral envelope]] into a [[ribonucleoprotein]] (RNP)
complex called the [[capsid]].<ref name="pmid25105276">{{cite journal |vauthors=McBride R, van Zyl M, Fielding BC |title=The coronavirus nucleocapsid is a multifunctional protein |journal=Viruses |volume=6 |issue=8 |pages=2991–3018 |date=August 2014 |pmid=25105276 |pmc=4147684 |doi=10.3390/v6082991 |url=}}</ref>
|}<br />
====Structural Proteins====
====Structural Proteins====


*'''Spike (S) Protein'''
*'''Spike (S) Protein <ref name="MathewsonBishop2008" /><ref name="pmid14647384" />'''
** Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases.
** Cell entry of [[Coronavirus|coronaviruses]] depends on binding of the viral spike (S) proteins to cellular [[receptors]] and on S protein priming by host cell [[Protease|proteases]].
**Early studies indicate that SARS-CoV-2 uses the SARS-CoV receptor angiotensin-converting enzyme 2 (ACE2) for entry and transmembrane protease serine 2 (TMPRSS2) for S protein priming.<ref name="ZhouYang20203">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>
**Early studies indicate that SARS-CoV-2 uses the [[SARS-CoV]] receptor [[angiotensin-converting enzyme 2]] [[Angiotensin-converting enzyme 2|(ACE2]]) for entry and [[Transmembrane protein|transmembrane protease serine 2]] (TMPRSS2) for S protein priming.<ref name="MathewsonBishop20082">{{cite journal|last1=Mathewson|first1=Alison C.|last2=Bishop|first2=Alexandra|last3=Yao|first3=Yongxiu|last4=Kemp|first4=Fred|last5=Ren|first5=Junyuan|last6=Chen|first6=Hongying|last7=Xu|first7=Xiaodong|last8=Berkhout|first8=Ben|last9=van der Hoek|first9=Lia|last10=Jones|first10=Ian M.|title=Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2|journal=
**The spike (S) glycoprotein is a type I transmembrane glycoprotein that plays an important role in mediating viral infection.
Journal of General Virology
|volume=89|issue=11|year=2008|pages=2741–2745|issn=0022-1317|doi=10.1099/vir.0.2008/003962-0}}</ref><ref name="ZhouYang20203">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>
**The spike (S) [[glycoprotein]] is a type I [[Transmembrane protein|transmembrane]] glycoprotein that plays an important role in mediating [[viral infection]].
**The S proteins consist of two subunits, S1 and S2.
**The S proteins consist of two subunits, S1 and S2.
**The S1 subunit binds the cellular receptor through its receptor-binding domain (RBD), followed by conformational changes in the S2 subunit, which allows the fusion peptide to insert into the host target cell membrane.<ref name="NievaCarrasco2015">{{cite journal|last1=Nieva|first1=José|last2=Carrasco|first2=Luis|title=Viroporins: Structures and functions beyond cell membrane permeabilization|journal=Viruses|volume=7|issue=10|year=2015|pages=5169–5171|issn=1999-4915|doi=10.3390/v7102866}}</ref>
**The S1 subunit binds the cellular receptor through its receptor-binding domain (RBD), followed by conformational changes in the S2 subunit, which allows the fusion peptide to insert into the host target cell membrane.<ref name="NievaCarrasco2015">{{cite journal|last1=Nieva|first1=José|last2=Carrasco|first2=Luis|title=Viroporins: Structures and functions beyond cell membrane permeabilization|journal=Viruses|volume=7|issue=10|year=2015|pages=5169–5171|issn=1999-4915|doi=10.3390/v7102866}}</ref>


*'''Envelope (E) Protein'''
*'''Envelope (E) Protein<ref name="SchoemanFielding20194" />'''
**The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus’ life cycle, such as assembly, budding, envelope formation, and pathogenesis.
**The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the [[virus]]’ life cycle, such as assembly, budding, envelope formation, and pathogenesis.<ref name="SchoemanFielding20192">{{cite journal|last1=Schoeman|first1=Dewald|last2=Fielding|first2=Burtram C.|title=Coronavirus envelope protein: current knowledge|journal=Virology Journal|volume=16|issue=1|year=2019|issn=1743-422X|doi=10.1186/s12985-019-1182-0}}</ref>
**Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins.
**Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins.<ref name="SchoemanFielding20193">{{cite journal|last1=Schoeman|first1=Dewald|last2=Fielding|first2=Burtram C.|title=Coronavirus envelope protein: current knowledge|journal=Virology Journal|volume=16|issue=1|year=2019|issn=1743-422X|doi=10.1186/s12985-019-1182-0}}</ref>
**Recombinant CoVs lacking E exhibit significantly reduced viral titres, crippled viral maturation, or yield propagation incompetent progeny, demonstrating the importance of E in virus production and maturation.<ref name="SchoemanFielding2019">{{cite journal|last1=Schoeman|first1=Dewald|last2=Fielding|first2=Burtram C.|title=Coronavirus envelope protein: current knowledge|journal=Virology Journal|volume=16|issue=1|year=2019|issn=1743-422X|doi=10.1186/s12985-019-1182-0}}</ref>
**Recombinant CoVs lacking E exhibit significantly reduced viral titres, crippled viral maturation, or yield propagation incompetent progeny, demonstrating the importance of E in virus production and maturation.<ref name="SchoemanFielding2019">{{cite journal|last1=Schoeman|first1=Dewald|last2=Fielding|first2=Burtram C.|title=Coronavirus envelope protein: current knowledge|journal=Virology Journal|volume=16|issue=1|year=2019|issn=1743-422X|doi=10.1186/s12985-019-1182-0}}</ref>


*'''Membrane (M) Protein'''
<br />[[File:SARS-Cov-2 protien.jpg|thumb|Structure Protein of Coronavirus <ref name="SeahSu2020">{{cite journal|last1=Seah|first1=Ivan|last2=Su|first2=Xinyi|last3=Lingam|first3=Gopal|title=Revisiting the dangers of the coronavirus in the ophthalmology practice|journal=Eye|volume=34|issue=7|year=2020|pages=1155–1157|issn=0950-222X|doi=10.1038/s41433-020-0790-7}}</ref>|center]]<br />
**The CoV membrane (M) protein is a component of the viral envelope that plays a central role in virus morphogenesis and assembly via its interactions with other viral proteins.
 
**M is located among the S proteins in the virus envelope along with small amounts of E and is the primary driver of the virus budding process.
*'''Membrane (M) Protein <ref name="FehrPerlman2015" />'''
**During assembly of the authentic virion M interacts with itself, with the nucleocapsid protein N, with E and with the S protein.
**The CoV membrane (M) protein is a component of the [[viral envelope]] that plays a central role in [[virus]] [[morphogenesis]] and assembly via its interactions with other [[viral]] [[proteins]].
**The M protein has dominant cellular immunogenicity and elicits a strong humoral response which suggests it could serve as a potential target in vaccine design.<ref name="SiuTeoh2008">{{cite journal|last1=Siu|first1=Y. L.|last2=Teoh|first2=K. T.|last3=Lo|first3=J.|last4=Chan|first4=C. M.|last5=Kien|first5=F.|last6=Escriou|first6=N.|last7=Tsao|first7=S. W.|last8=Nicholls|first8=J. M.|last9=Altmeyer|first9=R.|last10=Peiris|first10=J. S. M.|last11=Bruzzone|first11=R.|last12=Nal|first12=B.|title=The M, E, and N Structural Proteins of the Severe Acute Respiratory Syndrome Coronavirus Are Required for Efficient Assembly, Trafficking, and Release of Virus-Like Particles |journal=Journal of Virology|volume=82|issue=22|year=2008|pages=11318–11330|issn=0022-538X|doi=10.1128/JVI.01052-08}}</ref> <ref name="pmid6325194">{{cite journal |vauthors=Tooze J, Tooze S, Warren G |title=Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions |journal=Eur. J. Cell Biol. |volume=33 |issue=2 |pages=281–93 |date=March 1984 |pmid=6325194 |doi= |url=}}</ref>
**M is located among the S proteins in the [[Viral envelope|virus envelope]] along with small amounts of E and is the primary driver of the [[Budding|virus budding process]].
**During assembly of the authentic virion M interacts with itself, with the [[nucleocapsid]] protein N, with E and with the S protein.
**The M protein has [[dominant]] cellular [[immunogenicity]] and elicits a strong [[Antibody responses|humoral response]] which suggests it could serve as a potential target in [[vaccine]] design.<ref name="SiuTeoh2008">{{cite journal|last1=Siu|first1=Y. L.|last2=Teoh|first2=K. T.|last3=Lo|first3=J.|last4=Chan|first4=C. M.|last5=Kien|first5=F.|last6=Escriou|first6=N.|last7=Tsao|first7=S. W.|last8=Nicholls|first8=J. M.|last9=Altmeyer|first9=R.|last10=Peiris|first10=J. S. M.|last11=Bruzzone|first11=R.|last12=Nal|first12=B.|title=The M, E, and N Structural Proteins of the Severe Acute Respiratory Syndrome Coronavirus Are Required for Efficient Assembly, Trafficking, and Release of Virus-Like Particles |journal=Journal of Virology|volume=82|issue=22|year=2008|pages=11318–11330|issn=0022-538X|doi=10.1128/JVI.01052-08}}</ref> <ref name="pmid6325194">{{cite journal |vauthors=Tooze J, Tooze S, Warren G |title=Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions |journal=Eur. J. Cell Biol. |volume=33 |issue=2 |pages=281–93 |date=March 1984 |pmid=6325194 |doi= |url=}}</ref>


*'''Nucleocapsid (N) Protein'''
*'''Nucleocapsid (N) Protein'''<ref name="pmid251052762">{{cite journal |vauthors=McBride R, van Zyl M, Fielding BC |title=The coronavirus nucleocapsid is a multifunctional protein |journal=Viruses |volume=6 |issue=8 |pages=2991–3018 |date=August 2014 |pmid=25105276 |pmc=4147684 |doi=10.3390/v6082991 |url=}}</ref>
** The primary function of the nucleocapsid (N) protein is to package the viral RNA genome within the viral envelope into a ribonucleoprotein (RNP) complex called the capsid.
** The primary function of the nucleocapsid (N) protein is to package the viral RNA [[genome]] within the viral envelope into a ribonucleoprotein (RNP) complex called the capsid.
**Ribonucleocapsid packaging is a fundamental part of viral self-assembly and replication.
**[[Ribonucleoprotein|Ribonucleocapsid]] packaging is a fundamental part of viral self-assembly and replication.
**Additionally, the N-protein of the SARS-CoV-2 affects host cell responses and may serve regulatory roles during its viral life cycle.<br />
**Additionally, the N-protein of the SARS-CoV-2 affects host cell responses and may serve regulatory roles during its viral life cycle.<br />


===='''<big>Corona Virus Life Cycle</big>:'''====
=== CORONA VIRUS LIFE CYCLE: ===
[[File:Coronavirus-Cycle-Simplified-2048x1463.jpg|thumb|529x529px|[[CORONA]]<ref>{{Cite web|url=https://doi.org/10.3390/pathogens9050331|title=The Human Coronavirus Disease COVID-19: Its Origin, Characteristics, and Insights into Potential Drugs and Its Mechanisms|last=|first=Lo’ai Alanagreh .Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}</ref> VIRUS LIFECYCLE]]
 
===<small>Attachment and Entry</small>:===
===<small>Attachment and Entry</small>:===


*The attachment of the virion to the host cell is associated with the  interactions between the S protein and its receptor.
*The attachment of the virion to the host cell is associated with the  interactions between the S protein and its receptor.
*The sites of receptor binding domains (RBD) within the S1 region of a coronavirus (SARS-CoV-2)  S protein is at the C Terminus.<ref name="pmid7520090">{{cite journal |vauthors=Kubo H, Yamada YK, Taguchi F |title=Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein |journal=J. Virol. |volume=68 |issue=9 |pages=5403–10 |date=September 1994 |pmid=7520090 |pmc=236940 |doi= |url=}}</ref>
*The sites of receptor binding domains (RBD) within the S1 region of a coronavirus (SARS-CoV-2)  S protein is at the C Terminus.<ref name="pmid7520090">{{cite journal |vauthors=Kubo H, Yamada YK, Taguchi F |title=Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein |journal=J. Virol. |volume=68 |issue=9 |pages=5403–10 |date=September 1994 |pmid=7520090 |pmc=236940 |doi= |url=}}</ref>
*SARS-CoV use angiotensin-converting enzyme 2 (ACE2) as their receptor<ref name="ZhouYang20204">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>
*SARS-CoV use [[angiotensin-converting enzyme 2]] (ACE2) as their receptor<ref name="ZhouYang20204">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>
*After binding to the receptor, the virus next step is to gain access to the host cell cytosol.
*After binding to the receptor, the virus next step is to gain access to the host cell cytosol.
*This is generally done by cathepsin,TMPRRS2 or some other protease. This is followed by fusion of the viral and cellular membranes.
*This is generally done by [[cathepsin]],TMPRRS2 or some other [[protease]]. This is followed by fusion of the viral and [[Cell membranes|cellular membranes]].
*S protein cleavage occurs at two sites within the S2 portion of the protein, with the first cleavage important for separating the RBD (Receptor binding domain) and fusion domains of the S protein <ref name="pmid19321428">{{cite journal |vauthors=Belouzard S, Chu VC, Whittaker GR |title=Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=106 |issue=14 |pages=5871–6 |date=April 2009 |pmid=19321428 |pmc=2660061 |doi=10.1073/pnas.0809524106 |url=}}</ref> and the second for exposing the fusion peptide (cleavage at S2′).
*S protein cleavage occurs at two sites within the S2 portion of the [[protein]], with the first cleavage important for separating the RBD (Receptor binding domain) and fusion domains of the S protein <ref name="pmid19321428">{{cite journal |vauthors=Belouzard S, Chu VC, Whittaker GR |title=Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=106 |issue=14 |pages=5871–6 |date=April 2009 |pmid=19321428 |pmc=2660061 |doi=10.1073/pnas.0809524106 |url=}}</ref> and the second for exposing the fusion peptide (cleavage at S2′).
*Fusion occurs within acidified endosomes.
*Fusion occurs within acidified [[endosomes]].
* Cleavage at S2′ exposes a fusion peptide that inserts into the membrane, which is followed by joining of two heptad repeats in S2 forming an antiparallel six-helix bundle<ref name="pmid2885899">{{cite journal |vauthors=Knuhtsen S, Holst JJ, Schwartz TW, Jensen SL, Nielsen OV |title=The effect of gastrin-releasing peptide on the endocrine pancreas |journal=Regul. Pept. |volume=17 |issue=5 |pages=269–76 |date=May 1987 |pmid=2885899 |doi=10.1016/0167-0115(87)90284-9 |url=}}</ref>.The formation of this bundle allows for the mixing of viral and cellular membranes, resulting in fusion and ultimately release of the viral genome into the cytoplasm.
* Cleavage at S2′ exposes a fusion [[peptide]] that inserts into the membrane, which is followed by joining of two heptad repeats in S2 forming an antiparallel six-helix bundle<ref name="pmid2885899">{{cite journal |vauthors=Knuhtsen S, Holst JJ, Schwartz TW, Jensen SL, Nielsen OV |title=The effect of gastrin-releasing peptide on the endocrine pancreas |journal=Regul. Pept. |volume=17 |issue=5 |pages=269–76 |date=May 1987 |pmid=2885899 |doi=10.1016/0167-0115(87)90284-9 |url=}}</ref>.The formation of this bundle allows for the mixing of viral and cellular membranes, resulting in fusion and ultimately release of the viral genome into the cytoplasm.


===='''RNA Replicase Protein Expression:'''====
===='''RNA Replicase Protein Expression:'''====


*The next step in the coronavirus lifecycle is translation and assembly of the viral replicase complexes  from the virion genomic RNA.
*The next step in the coronavirus lifecycle is [[Translation (genetics)|translation]] and assembly of the viral replicase complexes  from the [[virion]] genomic RNA.


<br />
==== Replication and Transcription:====
==== Replication and Transcription:====


*The translation and assembly of the viral replicase complexes is followed by viral RNA synthesis.
*The [[Translation (genetics)|translation]] and assembly of the viral replicase complexes is followed by viral [[RNA synthesis|RNA synthesi]]<nowiki/>s.
*Viral RNA synthesis produces both genomic and sub-genomic RNAs. Sub-genomic RNAs serve as mRNAs for the structural and accessory genes which reside downstream of the replicase polyproteins. All positive-sense sub-genomic RNAs are 3′ co-terminal with the full-length viral genome and thus form a set of nested RNAs, a distinctive property of the order ''Nidovirales''. Both genomic and sub-genomic RNAs are produced through negative-strand intermediates. These negative-strand intermediates are only about 1 % as abundant as their positive-sense counterparts and contain both poly-uridylate and anti-leader sequences.<ref name="pmid1985203">{{cite journal |vauthors=Sethna PB, Hofmann MA, Brian DA |title=Minus-strand copies of replicating coronavirus mRNAs contain antileaders |journal=J. Virol. |volume=65 |issue=1 |pages=320–5 |date=January 1991 |pmid=1985203 |pmc=240520 |doi= |url=}}</ref>
*Viral RNA synthesis produces both genomic and sub-genomic RNAs.
*Sub-genomic RNAs serve as [[mRNA]]<nowiki/>s for the structural and accessory [[genes]] which reside downstream of the replicase polyproteins. All [[Positive-sense RNA|positive-sense]] sub-genomic RNAs are 3′ co-terminal with the full-length viral genome and thus form a set of nested RNAs, a distinctive property of the order ''[[Nidovirales]]''. Both genomic and sub-genomic RNAs are produced through [[negative-sense]] intermediates. These negative-strand intermediates are only about 1 % as abundant as their [[Positive-sense RNA|positive-sense]] counterparts and contain both poly-uridylate and anti-leader sequences.<ref name="pmid1985203">{{cite journal |vauthors=Sethna PB, Hofmann MA, Brian DA |title=Minus-strand copies of replicating coronavirus mRNAs contain antileaders |journal=J. Virol. |volume=65 |issue=1 |pages=320–5 |date=January 1991 |pmid=1985203 |pmc=240520 |doi= |url=}}</ref>
 
==== Assembly and Release: ====


* After replication and transcription, the structural proteins of virus ( S,M,E) are translated and then inserted into [[endoplasmic reticulum]]. From [[endoplasmic reticulum]] they are taken to endoplasmic reticulum-Golgi intermediate compartment.<ref name="pmid8294506">{{cite journal |vauthors=Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G |title=Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step |journal=J. Cell Biol. |volume=124 |issue=1-2 |pages=55–70 |date=January 1994 |pmid=8294506 |pmc=2119890 |doi=10.1083/jcb.124.1.55 |url=}}</ref>
* Here the N protein encapsidate the viral [[genome]], and  bud into membranes of the endoplasmic reticulum-Golgi intermediate compartment containing viral structural proteins, thus forming mature virion.<ref name="pmid16139595">{{cite journal |vauthors=de Haan CA, Rottier PJ |title=Molecular interactions in the assembly of coronaviruses |journal=Adv. Virus Res. |volume=64 |issue= |pages=165–230 |date=2005 |pmid=16139595 |pmc=7112327 |doi=10.1016/S0065-3527(05)64006-7 |url=}}</ref>
*Following assembly, virions are transported to the cell surface in vesicles and released by exocytosis.<br />
==Tropism==
==Tropism==
* Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) preferentially infects cells in the [[respiratory tract]], which is [[lung]] [[Alveolus|alveolar epithelial cell]] .<ref name="pmid32074444">{{cite journal |vauthors=Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen HL, Peiris M, Wu J |title=SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients |journal=N. Engl. J. Med. |volume=382 |issue=12 |pages=1177–1179 |date=March 2020 |pmid=32074444 |pmc=7121626 |doi=10.1056/NEJMc2001737 |url=}}</ref><ref name="pmid32226285">{{cite journal |vauthors=Zheng J |title=SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat |journal=Int. J. Biol. Sci. |volume=16 |issue=10 |pages=1678–1685 |date=2020 |pmid=32226285 |pmc=7098030 |doi=10.7150/ijbs.45053 |url=}}</ref>
* SARS-CoV-2 can be detected in multiple organs, including the [[lungs]], [[heart]], [[liver]], [[brain]], [[pharynx]] and [[Kidney|kidneys]].<ref name="pmid32402155">{{cite journal |vauthors=Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB |title=Multiorgan and Renal Tropism of SARS-CoV-2 |journal=N. Engl. J. Med. |volume= |issue= |pages= |date=May 2020 |pmid=32402155 |pmc=7240771 |doi=10.1056/NEJMc2011400 |url=}}</ref>
* Highest levels of SARS-CoV-2 copies per cell were presumed to be detected in the [[respiratory tract]], and lower levels were detected the [[kidneys]], [[liver]], [[heart]], [[brain]], and [[blood]].
**These findings indicate a broad organotropism of SARS-CoV-2.<ref name="pmid324021552">{{cite journal |vauthors=Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB |title=Multiorgan and Renal Tropism of SARS-CoV-2 |journal=N. Engl. J. Med. |volume= |issue= |pages= |date=May 2020 |pmid=32402155 |pmc=7240771 |doi=10.1056/NEJMc2011400 |url=}}</ref>
<br />
<br />
==Natural Reservoir==
==Natural Reservoir==
<br />
 
* Current evidences suggest that the evolutional origin of SARS-CoV-2 is from bat virus an intermediate host between bats and human might exist.<ref name="pmid32007145">{{cite journal |vauthors=Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W |title=Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding |journal=Lancet |volume=395 |issue=10224 |pages=565–574 |date=February 2020 |pmid=32007145 |pmc=7159086 |doi=10.1016/S0140-6736(20)30251-8 |url=}}</ref><ref name="WuZhao2020">{{cite journal|last1=Wu|first1=Fan|last2=Zhao|first2=Su|last3=Yu|first3=Bin|last4=Chen|first4=Yan-Mei|last5=Wang|first5=Wen|last6=Song|first6=Zhi-Gang|last7=Hu|first7=Yi|last8=Tao|first8=Zhao-Wu|last9=Tian|first9=Jun-Hua|last10=Pei|first10=Yuan-Yuan|last11=Yuan|first11=Ming-Li|last12=Zhang|first12=Yu-Ling|last13=Dai|first13=Fa-Hui|last14=Liu|first14=Yi|last15=Wang|first15=Qi-Min|last16=Zheng|first16=Jiao-Jiao|last17=Xu|first17=Lin|last18=Holmes|first18=Edward C.|last19=Zhang|first19=Yong-Zhen|title=A new coronavirus associated with human respiratory disease in China|journal=Nature|volume=579|issue=7798|year=2020|pages=265–269|issn=0028-0836|doi=10.1038/s41586-020-2008-3}}</ref>
* Potential intermediate host for SARS-CoV-2 can be [[pangolin]].
*Novel coronaviruses representing two sub-lineages related to SARS-CoV-2 were found in the samples of malytan [[pangolin]]<nowiki/>s.<ref name="LamShum2020">{{cite journal|last1=Lam|first1=Tommy Tsan-Yuk|last2=Shum|first2=Marcus Ho-Hin|last3=Zhu|first3=Hua-Chen|last4=Tong|first4=Yi-Gang|last5=Ni|first5=Xue-Bing|last6=Liao|first6=Yun-Shi|last7=Wei|first7=Wei|last8=Cheung|first8=William Yiu-Man|last9=Li|first9=Wen-Juan|last10=Li|first10=Lian-Feng|last11=Leung|first11=Gabriel M|last12=Holmes|first12=Edward C.|last13=Hu|first13=Yan-Ling|last14=Guan|first14=Yi|year=2020|doi=10.1101/2020.02.13.945485}}</ref>
*The similarity of SARS-CoV-2 to these identified [[Coronavirus|coronaviruses]] from [[Pangolin|pangolins]] is approximately 85.5% to 92.4% in genomes, lower than that to the bat coronavirus RaTG13 (96.2%) 14,62.
*However, the receptor-binding domain of S protein from one sub-lineage of the pangolin coronaviruses shows 97.4% similarity in amino acid sequences to that of SARS-CoV-2, even higher than that to RaTG13 (89.2%).<ref name="LamShum20202">{{cite journal|last1=Lam|first1=Tommy Tsan-Yuk|last2=Shum|first2=Marcus Ho-Hin|last3=Zhu|first3=Hua-Chen|last4=Tong|first4=Yi-Gang|last5=Ni|first5=Xue-Bing|last6=Liao|first6=Yun-Shi|last7=Wei|first7=Wei|last8=Cheung|first8=William Yiu-Man|last9=Li|first9=Wen-Juan|last10=Li|first10=Lian-Feng|last11=Leung|first11=Gabriel M|last12=Holmes|first12=Edward C.|last13=Hu|first13=Yan-Ling|last14=Guan|first14=Yi|year=2020|doi=10.1101/2020.02.13.945485}}</ref>
*
 
==References==
==References==
{{reflist|2}}<br />
{{reflist|2}}<br />
==References==
 
{{Reflist|2}}
{{Reflist|2}}
{{WH}}
{{WH}}
{{WS}}
{{WS}}

Latest revision as of 18:17, 20 July 2020

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

SARS-CoV-2 On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of SARS-CoV-2

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on SARS-CoV-2

CDC on SARS-CoV-2

SARS-CoV-2 in the news

Blogs on SARS-CoV-2

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for SARS-CoV-2

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [[1]]; Associate Editor(s)-in-Chief: Syed rizvi, M.B.B.S[1]

Overview

The Coronavirus disease-2019 (COVID-19), is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 forms a distinct lineage with bat SARS-like coronaviruses . The virus is closely related (96.3%) to bat coronavirus RaTG13, based on phylogenetic analysis, that belong to the order Nidovirales, family Coronaviridae, genus Betacoronavirus, and subgenus Sarbecovirus . Coronaviruses are enveloped, single-stranded RNA viruses that can infect a wide range of hosts including avian, wild, domestic mammalian species, and humans. Coronaviruses are well known for their ability to mutate rapidly, alter tissue tropism, cross the species barrier, and adapt to different epidemiological situations. Six human coronaviruses have been reported since the 1960s; OC43, 229E, NL63, HKU1, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). First case of COVID-19 was reported in Wuhan, Hubei province, China, in December 2019, associated with the Huanan Seafood Wholesale Market. On March 11, 2020 the Novel Coronavirus Disease, COVID-19, was declared a pandemic by the World Health Organization

Taxonomy

  • SARS-CoV-2 belong to the order nidovirale, family coronaviridae.[1]
  • Coronaviridae is classified into two subfamilies.
    • Torovirinae
    • Coronavirinae
  • Coronavirinae is further classified on the basis of phylogenetic analysis and genome structure into four genera:
    • Alpha coronavirus (αCoV).
    • Beta coronavirus (βCoV).
    • Gamma coronavirus (γCoV).
    • Delta coronavirus (δCoV), which contain 17, 12, 2, and 7 unique species, respectively (ICTV 2018).
  • CoV-2 falls under beta coronavirus.
Stuructural Protein Function of protein
Spike (S) Protein Critical for binding to host cell receptor (ACE-2 receptor) and facilitate entry to host cell.[2][3]
Envelope (E) Protein Envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus’ life cycle, such as assembly,

budding, envelope formation, and pathogenesis.[4]

Membrane (M) Protein Membrane (M) protein is a component of the viral envelope that plays a central role in virus

morphogenesis and assembly via its interactions with other viral proteins[5]

Nucleocapsid (N) Protein Nucleocapsid (N) protein is to package the viral RNA genome within the viral envelope into a ribonucleoprotein (RNP)

complex called the capsid.[6]


Structural Proteins

  • Envelope (E) Protein[4]
    • The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus’ life cycle, such as assembly, budding, envelope formation, and pathogenesis.[10]
    • Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins.[11]
    • Recombinant CoVs lacking E exhibit significantly reduced viral titres, crippled viral maturation, or yield propagation incompetent progeny, demonstrating the importance of E in virus production and maturation.[12]


Structure Protein of Coronavirus [13]


  • Nucleocapsid (N) Protein[16]
    • The primary function of the nucleocapsid (N) protein is to package the viral RNA genome within the viral envelope into a ribonucleoprotein (RNP) complex called the capsid.
    • Ribonucleocapsid packaging is a fundamental part of viral self-assembly and replication.
    • Additionally, the N-protein of the SARS-CoV-2 affects host cell responses and may serve regulatory roles during its viral life cycle.

CORONA VIRUS LIFE CYCLE:

CORONA[17] VIRUS LIFECYCLE

Attachment and Entry:

  • The attachment of the virion to the host cell is associated with the interactions between the S protein and its receptor.
  • The sites of receptor binding domains (RBD) within the S1 region of a coronavirus (SARS-CoV-2) S protein is at the C Terminus.[18]
  • SARS-CoV use angiotensin-converting enzyme 2 (ACE2) as their receptor[19]
  • After binding to the receptor, the virus next step is to gain access to the host cell cytosol.
  • This is generally done by cathepsin,TMPRRS2 or some other protease. This is followed by fusion of the viral and cellular membranes.
  • S protein cleavage occurs at two sites within the S2 portion of the protein, with the first cleavage important for separating the RBD (Receptor binding domain) and fusion domains of the S protein [20] and the second for exposing the fusion peptide (cleavage at S2′).
  • Fusion occurs within acidified endosomes.
  • Cleavage at S2′ exposes a fusion peptide that inserts into the membrane, which is followed by joining of two heptad repeats in S2 forming an antiparallel six-helix bundle[21].The formation of this bundle allows for the mixing of viral and cellular membranes, resulting in fusion and ultimately release of the viral genome into the cytoplasm.

RNA Replicase Protein Expression:

  • The next step in the coronavirus lifecycle is translation and assembly of the viral replicase complexes from the virion genomic RNA.

Replication and Transcription:

  • The translation and assembly of the viral replicase complexes is followed by viral RNA synthesis.
  • Viral RNA synthesis produces both genomic and sub-genomic RNAs.
  • Sub-genomic RNAs serve as mRNAs for the structural and accessory genes which reside downstream of the replicase polyproteins. All positive-sense sub-genomic RNAs are 3′ co-terminal with the full-length viral genome and thus form a set of nested RNAs, a distinctive property of the order Nidovirales. Both genomic and sub-genomic RNAs are produced through negative-sense intermediates. These negative-strand intermediates are only about 1 % as abundant as their positive-sense counterparts and contain both poly-uridylate and anti-leader sequences.[22]

Assembly and Release:

  • After replication and transcription, the structural proteins of virus ( S,M,E) are translated and then inserted into endoplasmic reticulum. From endoplasmic reticulum they are taken to endoplasmic reticulum-Golgi intermediate compartment.[23]
  • Here the N protein encapsidate the viral genome, and bud into membranes of the endoplasmic reticulum-Golgi intermediate compartment containing viral structural proteins, thus forming mature virion.[24]
  • Following assembly, virions are transported to the cell surface in vesicles and released by exocytosis.

Tropism


Natural Reservoir

  • Current evidences suggest that the evolutional origin of SARS-CoV-2 is from bat virus an intermediate host between bats and human might exist.[29][30]
  • Potential intermediate host for SARS-CoV-2 can be pangolin.
  • Novel coronaviruses representing two sub-lineages related to SARS-CoV-2 were found in the samples of malytan pangolins.[31]
  • The similarity of SARS-CoV-2 to these identified coronaviruses from pangolins is approximately 85.5% to 92.4% in genomes, lower than that to the bat coronavirus RaTG13 (96.2%) 14,62.
  • However, the receptor-binding domain of S protein from one sub-lineage of the pangolin coronaviruses shows 97.4% similarity in amino acid sequences to that of SARS-CoV-2, even higher than that to RaTG13 (89.2%).[32]

References

  1. Zhou, Peng; Yang, Xing-Lou; Wang, Xian-Guang; Hu, Ben; Zhang, Lei; Zhang, Wei; Si, Hao-Rui; Zhu, Yan; Li, Bei; Huang, Chao-Lin; Chen, Hui-Dong; Chen, Jing; Luo, Yun; Guo, Hua; Jiang, Ren-Di; Liu, Mei-Qin; Chen, Ying; Shen, Xu-Rui; Wang, Xi; Zheng, Xiao-Shuang; Zhao, Kai; Chen, Quan-Jiao; Deng, Fei; Liu, Lin-Lin; Yan, Bing; Zhan, Fa-Xian; Wang, Yan-Yi; Xiao, Geng-Fu; Shi, Zheng-Li (2020). "A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 579 (7798): 270–273. doi:10.1038/s41586-020-2012-7. ISSN 0028-0836.
  2. 2.0 2.1 Mathewson, Alison C.; Bishop, Alexandra; Yao, Yongxiu; Kemp, Fred; Ren, Junyuan; Chen, Hongying; Xu, Xiaodong; Berkhout, Ben; van der Hoek, Lia; Jones, Ian M. (2008). "Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2". Journal of General Virology. 89 (11): 2741–2745. doi:10.1099/vir.0.2008/003962-0. ISSN 0022-1317.
  3. 3.0 3.1 Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M (November 2003). "Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus". Nature. 426 (6965): 450–4. doi:10.1038/nature02145. PMC 7095016 Check |pmc= value (help). PMID 14647384.
  4. 4.0 4.1 Schoeman, Dewald; Fielding, Burtram C. (2019). "Coronavirus envelope protein: current knowledge". Virology Journal. 16 (1). doi:10.1186/s12985-019-1182-0. ISSN 1743-422X.
  5. 5.0 5.1 Fehr, Anthony R.; Perlman, Stanley (2015). "Coronaviruses: An Overview of Their Replication and Pathogenesis". 1282: 1–23. doi:10.1007/978-1-4939-2438-7_1. ISSN 1064-3745.
  6. McBride R, van Zyl M, Fielding BC (August 2014). "The coronavirus nucleocapsid is a multifunctional protein". Viruses. 6 (8): 2991–3018. doi:10.3390/v6082991. PMC 4147684. PMID 25105276.
  7. Mathewson, Alison C.; Bishop, Alexandra; Yao, Yongxiu; Kemp, Fred; Ren, Junyuan; Chen, Hongying; Xu, Xiaodong; Berkhout, Ben; van der Hoek, Lia; Jones, Ian M. (2008). "Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2". Journal of General Virology. 89 (11): 2741–2745. doi:10.1099/vir.0.2008/003962-0. ISSN 0022-1317.
  8. Zhou, Peng; Yang, Xing-Lou; Wang, Xian-Guang; Hu, Ben; Zhang, Lei; Zhang, Wei; Si, Hao-Rui; Zhu, Yan; Li, Bei; Huang, Chao-Lin; Chen, Hui-Dong; Chen, Jing; Luo, Yun; Guo, Hua; Jiang, Ren-Di; Liu, Mei-Qin; Chen, Ying; Shen, Xu-Rui; Wang, Xi; Zheng, Xiao-Shuang; Zhao, Kai; Chen, Quan-Jiao; Deng, Fei; Liu, Lin-Lin; Yan, Bing; Zhan, Fa-Xian; Wang, Yan-Yi; Xiao, Geng-Fu; Shi, Zheng-Li (2020). "A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 579 (7798): 270–273. doi:10.1038/s41586-020-2012-7. ISSN 0028-0836.
  9. Nieva, José; Carrasco, Luis (2015). "Viroporins: Structures and functions beyond cell membrane permeabilization". Viruses. 7 (10): 5169–5171. doi:10.3390/v7102866. ISSN 1999-4915.
  10. Schoeman, Dewald; Fielding, Burtram C. (2019). "Coronavirus envelope protein: current knowledge". Virology Journal. 16 (1). doi:10.1186/s12985-019-1182-0. ISSN 1743-422X.
  11. Schoeman, Dewald; Fielding, Burtram C. (2019). "Coronavirus envelope protein: current knowledge". Virology Journal. 16 (1). doi:10.1186/s12985-019-1182-0. ISSN 1743-422X.
  12. Schoeman, Dewald; Fielding, Burtram C. (2019). "Coronavirus envelope protein: current knowledge". Virology Journal. 16 (1). doi:10.1186/s12985-019-1182-0. ISSN 1743-422X.
  13. Seah, Ivan; Su, Xinyi; Lingam, Gopal (2020). "Revisiting the dangers of the coronavirus in the ophthalmology practice". Eye. 34 (7): 1155–1157. doi:10.1038/s41433-020-0790-7. ISSN 0950-222X.
  14. Siu, Y. L.; Teoh, K. T.; Lo, J.; Chan, C. M.; Kien, F.; Escriou, N.; Tsao, S. W.; Nicholls, J. M.; Altmeyer, R.; Peiris, J. S. M.; Bruzzone, R.; Nal, B. (2008). "The M, E, and N Structural Proteins of the Severe Acute Respiratory Syndrome Coronavirus Are Required for Efficient Assembly, Trafficking, and Release of Virus-Like Particles". Journal of Virology. 82 (22): 11318–11330. doi:10.1128/JVI.01052-08. ISSN 0022-538X.
  15. Tooze J, Tooze S, Warren G (March 1984). "Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions". Eur. J. Cell Biol. 33 (2): 281–93. PMID 6325194.
  16. McBride R, van Zyl M, Fielding BC (August 2014). "The coronavirus nucleocapsid is a multifunctional protein". Viruses. 6 (8): 2991–3018. doi:10.3390/v6082991. PMC 4147684. PMID 25105276.
  17. "The Human Coronavirus Disease COVID-19: Its Origin, Characteristics, and Insights into Potential Drugs and Its Mechanisms". |first1= missing |last1= in Authors list (help)
  18. Kubo H, Yamada YK, Taguchi F (September 1994). "Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein". J. Virol. 68 (9): 5403–10. PMC 236940. PMID 7520090.
  19. Zhou, Peng; Yang, Xing-Lou; Wang, Xian-Guang; Hu, Ben; Zhang, Lei; Zhang, Wei; Si, Hao-Rui; Zhu, Yan; Li, Bei; Huang, Chao-Lin; Chen, Hui-Dong; Chen, Jing; Luo, Yun; Guo, Hua; Jiang, Ren-Di; Liu, Mei-Qin; Chen, Ying; Shen, Xu-Rui; Wang, Xi; Zheng, Xiao-Shuang; Zhao, Kai; Chen, Quan-Jiao; Deng, Fei; Liu, Lin-Lin; Yan, Bing; Zhan, Fa-Xian; Wang, Yan-Yi; Xiao, Geng-Fu; Shi, Zheng-Li (2020). "A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 579 (7798): 270–273. doi:10.1038/s41586-020-2012-7. ISSN 0028-0836.
  20. Belouzard S, Chu VC, Whittaker GR (April 2009). "Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites". Proc. Natl. Acad. Sci. U.S.A. 106 (14): 5871–6. doi:10.1073/pnas.0809524106. PMC 2660061. PMID 19321428.
  21. Knuhtsen S, Holst JJ, Schwartz TW, Jensen SL, Nielsen OV (May 1987). "The effect of gastrin-releasing peptide on the endocrine pancreas". Regul. Pept. 17 (5): 269–76. doi:10.1016/0167-0115(87)90284-9. PMID 2885899.
  22. Sethna PB, Hofmann MA, Brian DA (January 1991). "Minus-strand copies of replicating coronavirus mRNAs contain antileaders". J. Virol. 65 (1): 320–5. PMC 240520. PMID 1985203.
  23. Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G (January 1994). "Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step". J. Cell Biol. 124 (1–2): 55–70. doi:10.1083/jcb.124.1.55. PMC 2119890. PMID 8294506.
  24. de Haan CA, Rottier PJ (2005). "Molecular interactions in the assembly of coronaviruses". Adv. Virus Res. 64: 165–230. doi:10.1016/S0065-3527(05)64006-7. PMC 7112327 Check |pmc= value (help). PMID 16139595.
  25. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen HL, Peiris M, Wu J (March 2020). "SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients". N. Engl. J. Med. 382 (12): 1177–1179. doi:10.1056/NEJMc2001737. PMC 7121626 Check |pmc= value (help). PMID 32074444 Check |pmid= value (help).
  26. Zheng J (2020). "SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat". Int. J. Biol. Sci. 16 (10): 1678–1685. doi:10.7150/ijbs.45053. PMC 7098030 Check |pmc= value (help). PMID 32226285 Check |pmid= value (help).
  27. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB (May 2020). "Multiorgan and Renal Tropism of SARS-CoV-2". N. Engl. J. Med. doi:10.1056/NEJMc2011400. PMC 7240771 Check |pmc= value (help). PMID 32402155 Check |pmid= value (help).
  28. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB (May 2020). "Multiorgan and Renal Tropism of SARS-CoV-2". N. Engl. J. Med. doi:10.1056/NEJMc2011400. PMC 7240771 Check |pmc= value (help). PMID 32402155 Check |pmid= value (help).
  29. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (February 2020). "Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding". Lancet. 395 (10224): 565–574. doi:10.1016/S0140-6736(20)30251-8. PMC 7159086 Check |pmc= value (help). PMID 32007145 Check |pmid= value (help).
  30. Wu, Fan; Zhao, Su; Yu, Bin; Chen, Yan-Mei; Wang, Wen; Song, Zhi-Gang; Hu, Yi; Tao, Zhao-Wu; Tian, Jun-Hua; Pei, Yuan-Yuan; Yuan, Ming-Li; Zhang, Yu-Ling; Dai, Fa-Hui; Liu, Yi; Wang, Qi-Min; Zheng, Jiao-Jiao; Xu, Lin; Holmes, Edward C.; Zhang, Yong-Zhen (2020). "A new coronavirus associated with human respiratory disease in China". Nature. 579 (7798): 265–269. doi:10.1038/s41586-020-2008-3. ISSN 0028-0836.
  31. Lam, Tommy Tsan-Yuk; Shum, Marcus Ho-Hin; Zhu, Hua-Chen; Tong, Yi-Gang; Ni, Xue-Bing; Liao, Yun-Shi; Wei, Wei; Cheung, William Yiu-Man; Li, Wen-Juan; Li, Lian-Feng; Leung, Gabriel M; Holmes, Edward C.; Hu, Yan-Ling; Guan, Yi (2020). doi:10.1101/2020.02.13.945485. Missing or empty |title= (help)
  32. Lam, Tommy Tsan-Yuk; Shum, Marcus Ho-Hin; Zhu, Hua-Chen; Tong, Yi-Gang; Ni, Xue-Bing; Liao, Yun-Shi; Wei, Wei; Cheung, William Yiu-Man; Li, Wen-Juan; Li, Lian-Feng; Leung, Gabriel M; Holmes, Edward C.; Hu, Yan-Ling; Guan, Yi (2020). doi:10.1101/2020.02.13.945485. Missing or empty |title= (help)


Template:WH Template:WS