Cardiogenic shock classification

Jump to navigation Jump to search

Cardiogenic Shock Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cardiogenic shock from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cardiogenic shock classification On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cardiogenic shock classification

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cardiogenic shock classification

CDC on Cardiogenic shock classification

Cardiogenic shock classification in the news

Blogs on Cardiogenic shock classification

Directions to Hospitals Treating Cardiogenic shock

Risk calculators and risk factors for Cardiogenic shock classification

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2]

Overview

Classification

In cardiogenic shock, the root abnormality is the inability of the heart to pump out enough blood to maintain normal organ perfusion and blood pressure. However, this failure may be due to different factors, which allow us to classify cardiogenic shock into two categories:[1][2]

  • Intrinsic - this includes the conditions affecting the heart or the structures that allow it to function properly. In this category, the affected structures may be: the myocardial muscle, responsible to pump out the blood; the heart valves allowing the blood in and out of the heart chambers; the conduction system, responsible for the transmission of the electrical signals that allow the myocardium to contract in a coordinated fashion or, a combination of the previous. Examples of such factors are: myocardial infarction, mitral regurgitation and electrolyte imbalances.
  • Compressive - this includes the conditions in which an otherwise "healthy heart" is prevented from working properly and pumping the blood through the vascular system, by a mechanism not related to it. The degree of impact that an extrinsic factor must have on the heart will depend on the condition of this last one. An "healthy heart" might take a more aggressive outside influence without compromising its function, while a heart already weakened by another disease, such as atherosclerosis, might fail more promptly. An example of such factor is cardiac tamponade.

Often times both factors are affecting the heart's ability to perform its function, at which times it might be hard to identify clearly the underlying mechanism of the cardiogenic shock.[3]

References

  1. Longo, Dan L. (Dan Louis) (2012). Harrison's principles of internal medici. New York: McGraw-Hill. ISBN 978-0-07-174889-6.
  2. Myers, Jeffrey (2002). Principles of pathophysiology and emergency medical care. Albany: Delmar/Thomson Learning. ISBN 978-0766825482.
  3. Myers, Jeffrey (2002). Principles of pathophysiology and emergency medical care. Albany: Delmar/Thomson Learning. ISBN 978-0766825482.


Template:WikiDoc Sources