Cardiogenic shock epidemiology and demographics

Jump to navigation Jump to search

Cardiogenic Shock Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cardiogenic shock from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cardiogenic shock epidemiology and demographics On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cardiogenic shock epidemiology and demographics

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cardiogenic shock epidemiology and demographics

CDC on Cardiogenic shock epidemiology and demographics

Cardiogenic shock epidemiology and demographics in the news

Blogs on Cardiogenic shock epidemiology and demographics

Directions to Hospitals Treating Cardiogenic shock

Risk calculators and risk factors for Cardiogenic shock epidemiology and demographics

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2] Syed Musadiq Ali M.B.B.S.[3]

Overview

In defiance of the historic numbers of mortality from cardiogenic shock of 80% to 90%, in the modern era, this type of shock comprises a mortality risk of around 50%, in the face of the diagnostic and treatment techniques, which have greatly been developed in recent years. Depending on the demographic and clinical factors, this risk can range from 10% to 80%. The incidence of cardiogenic shock among patients with acute MI is approximately 5% to 10%. Because atherosclerosis and myocardial infarction are both more frequent among males, cardiogenic shock is more common in this gender. However, because women tend to present with acute myocardial infarction at a later age, along with the fact that they have a greater chance of having multivessel coronary artery disease when they first develop symptoms, a greater proportion of women with acute MI develop cardiogenic shock.

Epidemiology and Demographics

Incidence

  • Higher incidence of CS are observed in women, Asian/Pacific Islanders, and patients aged >75 years[1].
  • The incidence of CS has increased in recent years, while the reason for increasing incidence is unclear, improved diagnosis and better access to care are both likely contributory.
  • The in‐hospital mortality has improved[2].
  • The 6‐ to 12‐month mortality in cardiogenic shock has remained unchanged at ≈50% over the past 2 decades[3].
  • Survivors of MI‐associated CS have an 18.6% risk of 30‐day readmission after discharge, with a median time of 10 days.
  • The risk of readmission is slightly lower among patients with STEMI versus NSTEMI. The most common causes of readmission are congestive heart failure and new myocardial infarction.

Prevalence

Age

  • Multicentre hospital‐based registries and surveys in the USA and Europe have shown the typical patient with CS to be >70 years of age.
  • CS patients to the ICU has increased over time in patients aged ≤65 years (from 44% to 51%), but remained relatively unchanged above this age (from 52% to 51%).
  • Also according to this registry, the 3 and 6 year survival rates of the group who underwent early revascularization were 41.4% and 32.8% respectively.[12]

Race

  • There is no racial predilection to CS.

Sex

  • Female sex, although initially classified as an independent predictor of outcome,[13] studies have revealed that this assumption wasn't true.[14][15][16]

Cardiogenic shock has shown to have greater incidence and mortality rate in certain classes of patients:

  • The time course evaluated by the GUSTO-I trial showed that, of the 41.000 patients with acute MI treated with fibrinolytic therapy, 0.8% were in shock on admission, an additional 5.3% developed shock after admission as a sudden event or as a gradual fall in blood pressure, and approximately 50% of the patients who developed shock after admission.[17]
  • The increase in the use of primary PCI, as the main reperfusion strategy for MI, over thrombolysis, has also contributed to the decrease in the incidence of CHF.[18][19] Back in the prereperfusion era, the 30-day mortality for acute MI complicated by cardiogenic shock was about 80%. This number went down to 58%, according to the GUSTO I registry, in patients who were treated with thrombolysis.[20]
  • Recently, improvements in mortality have been shown and confirmed, as by the GRACE registry, which studied a group of patients from 1999 to 2006, and that demonstrated a 24% decline in cardiogenic shock complicating acute MI, with the use of PCI reperfusion.[21]

References

  1. Kolte D, Khera S, Aronow WS, Mujib M, Palaniswamy C, Sule S, Jain D, Gotsis W, Ahmed A, Frishman WH, Fonarow GC (January 2014). "Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States". J Am Heart Assoc. 3 (1): e000590. doi:10.1161/JAHA.113.000590. PMC 3959706. PMID 24419737.
  2. "Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association | Circulation".
  3. 3.0 3.1 Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, Buller CE, Jacobs AK, Slater JN, Col J, McKinlay SM, LeJemtel TH (August 1999). "Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock". N. Engl. J. Med. 341 (9): 625–34. doi:10.1056/NEJM199908263410901. PMID 10460813.
  4. "Prevalence, Causes, and Predictors of 30‐Day Readmissions Following Hospitalization With Acute Myocardial Infarction Complicated By Cardiogenic Shock: Findings From the 2013–2014 National Readmissions Database | Journal of the American Heart Association".
  5. Hasdai, David. (2002). Cardiogenic shock : diagnosis and treatmen. Totowa, N.J.: Humana Press. ISBN 1-58829-025-5.
  6. Fox KA, Anderson FA, Dabbous OH, Steg PG, López-Sendón J, Van de Werf F; et al. (2007). "Intervention in acute coronary syndromes: do patients undergo intervention on the basis of their risk characteristics? The Global Registry of Acute Coronary Events (GRACE)". Heart. 93 (2): 177–82. doi:10.1136/hrt.2005.084830. PMC 1861403. PMID 16757543.
  7. Babaev A, Frederick PD, Pasta DJ, Every N, Sichrovsky T, Hochman JS; et al. (2005). "Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock". JAMA. 294 (4): 448–54. doi:10.1001/jama.294.4.448. PMID 16046651.
  8. 8.0 8.1 Hasdai D, Harrington RA, Hochman JS, Califf RM, Battler A, Box JW; et al. (2000). "Platelet glycoprotein IIb/IIIa blockade and outcome of cardiogenic shock complicating acute coronary syndromes without persistent ST-segment elevation". J Am Coll Cardiol. 36 (3): 685–92. PMID 10987585.
  9. Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T; et al. (2006). "Heart disease and stroke statistics--2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee". Circulation. 113 (6): e85–151. doi:10.1161/CIRCULATIONAHA.105.171600. PMID 16407573.
  10. Jacobs AK, Leopold JA, Bates E, Mendes LA, Sleeper LA, White H; et al. (2003). "Cardiogenic shock caused by right ventricular infarction: a report from the SHOCK registry". J Am Coll Cardiol. 41 (8): 1273–9. PMID 12706920.
  11. Hochman, Judith S; Buller, Christopher E; Sleeper, Lynn A; Boland, Jean; Dzavik, Vladimir; Sanborn, Timothy A; Godfrey, Emilie; White, Harvey D; Lim, John; LeJemtel, Thierry (2000). "Cardiogenic shock complicating acute myocardial infarction—etiologies, management and outcome: a report from the SHOCK Trial Registry". Journal of the American College of Cardiology. 36 (3): 1063–1070. doi:10.1016/S0735-1097(00)00879-2. ISSN 0735-1097.
  12. Hochman JS, Sleeper LA, Webb JG, Dzavik V, Buller CE, Aylward P; et al. (2006). "Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction". JAMA. 295 (21): 2511–5. doi:10.1001/jama.295.21.2511. PMC 1782030. PMID 16757723. [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi? dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17080971 Review in: ACP J Club. 2006 Nov-Dec;145(3):59]
  13. Klein LW, Shaw RE, Krone RJ, Brindis RG, Anderson HV, Block PC; et al. (2005). "Mortality after emergent percutaneous coronary intervention in cardiogenic shock secondary to acute myocardial infarction and usefulness of a mortality prediction model". Am J Cardiol. 96 (1): 35–41. doi:10.1016/j.amjcard.2005.02.040. PMID 15979429.
  14. 14.0 14.1 Zeymer U, Vogt A, Zahn R, Weber MA, Tebbe U, Gottwik M; et al. (2004). "Predictors of in-hospital mortality in 1333 patients with acute myocardial infarction complicated by cardiogenic shock treated with primary percutaneous coronary intervention (PCI); Results of the primary PCI registry of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausärzte (ALKK)". Eur Heart J. 25 (4): 322–8. doi:10.1016/j.ehj.2003.12.008. PMID 14984921.
  15. Wong SC, Sleeper LA, Monrad ES, Menegus MA, Palazzo A, Dzavik V; et al. (2001). "Absence of gender differences in clinical outcomes in patients with cardiogenic shock complicating acute myocardial infarction. A report from the SHOCK Trial Registry". J Am Coll Cardiol. 38 (5): 1395–401. PMID 11691514.
  16. Antoniucci D, Migliorini A, Moschi G, Valenti R, Trapani M, Parodi G; et al. (2003). "Does gender affect the clinical outcome of patients with acute myocardial infarction complicated by cardiogenic shock who undergo percutaneous coronary intervention?". Catheter Cardiovasc Interv. 59 (4): 423–8. doi:10.1002/ccd.10573. PMID 12891599.
  17. Holmes DR, Bates ER, Kleiman NS, Sadowski Z, Horgan JH, Morris DC; et al. (1995). "Contemporary reperfusion therapy for cardiogenic shock: the GUSTO-I trial experience. The GUSTO-I Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries". J Am Coll Cardiol. 26 (3): 668–74. PMID 7642857.
  18. Goldberg, R. J.; Spencer, F. A.; Gore, J. M.; Lessard, D.; Yarzebski, J. (2009). "Thirty-Year Trends (1975 to 2005) in the Magnitude of, Management of, and Hospital Death Rates Associated With Cardiogenic Shock in Patients With Acute Myocardial Infarction: A Population-Based Perspective". Circulation. 119 (9): 1211–1219. doi:10.1161/CIRCULATIONAHA.108.814947. ISSN 0009-7322.
  19. Giglioli C, Margheri M, Valente S, Comeglio M, Lazzeri C, Chechi T; et al. (2006). "Timing, setting and incidence of cardiovascular complications in patients with acute myocardial infarction submitted to primary percutaneous coronary intervention". Can J Cardiol. 22 (12): 1047–52. PMC 2568965. PMID 17036099.
  20. Topol, Eric (2007). Textbook of cardiovascular medicine. Philadelphia: Lippincott Williams & Wilkins. ISBN 0781770122.
  21. Fox KA, Steg PG, Eagle KA, Goodman SG, Anderson FA, Granger CB; et al. (2007). "Decline in rates of death and heart failure in acute coronary syndromes, 1999-2006". JAMA. 297 (17): 1892–900. doi:10.1001/jama.297.17.1892. PMID 17473299.
  22. Hasdai D, Holmes DR, Califf RM, Thompson TD, Hochman JS, Pfisterer M; et al. (1999). "Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO Investigators. Global Utilization of Streptokinase and Tissue-Plasminogen Activator for Occluded Coronary Arteries". Am Heart J. 138 (1 Pt 1): 21–31. PMID 10385759.
  23. Shindler DM, Palmeri ST, Antonelli TA, Sleeper LA, Boland J, Cocke TP; et al. (2000). "Diabetes mellitus in cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK?". J Am Coll Cardiol. 36 (3 Suppl A): 1097–103. PMID 10985711.
  24. Holmes, D. R.; Berger, P. B.; Hochman, J. S.; Granger, C. B.; Thompson, T. D.; Califf, R. M.; Vahanian, A.; Bates, E. R.; Topol, E. J. (1999). "Cardiogenic Shock in Patients With Acute Ischemic Syndromes With and Without ST-Segment Elevation". Circulation. 100 (20): 2067–2073. doi:10.1161/01.CIR.100.20.2067. ISSN 0009-7322.
  25. Jacobs, Alice K; French, John K; Col, Jacques; Sleeper, Lynn A; Slater, James N; Carnendran, Louis; Boland, Jean; Jiang, Xianjiao; LeJemtel, Thierry; Hochman, Judith S (2000). "Cardiogenic shock with non-ST-segment elevation myocardial infarction: a report from the SHOCK Trial Registry". Journal of the American College of Cardiology. 36 (3): 1091–1096. doi:10.1016/S0735-1097(00)00888-3. ISSN 0735-1097.


Template:WikiDoc Sources