JARID2

Revision as of 09:35, 23 November 2017 by 2407:7000:81ad:4400:d497:974b:2344:e1f6 (talk)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Protein Jumonji is a protein that in humans is encoded by the JARID2 gene.[1][2] JARID2 is a member of the 2-oxoglutarate (2OG)-dependent dioxygenase superfamily.

Jarid2 (jumonji, AT rich interactive domain 2) is a protein coding gene that functions as a putative transcription factor. Distinguished as a nuclear protein necessary for mouse embryogenesis, Jarid2 is a member of the jumonji family that contains a DNA binding domain known as the AT-rich interaction domain (ARID).[3][4][5][6] In vitro studies of Jarid2 reveal that ARID along with other functional domains are involved in DNA binding, nuclear localization, transcriptional repression,[7] and recruitment of Polycomb-repressive complex 2 (PRC2).[8][9] Intracellular mechanisms underlying these interactions remain largely unknown.

In search of developmentally important genes, Jarid2 has previously been identified by gene trap technology as an important factor necessary for organ development.[3][7][10] During mouse organogenesis, Jarid2 is involved in the formation of the neural tube and development of the liver, spleen, thymus and cardiovascular system.[11][12] Continuous Jarid2 expression in the tissues of the heart, highlight its presiding role in the development of both the embryonic and the adult heart.[3] Mutant models of Jarid2 embryos show severe heart malformations, ventricular septal defects, noncompaction of the ventricular wall, and dilated atria.[3] Homozygous mutants of Jarid2 are found to die soon after birth.[3] Overexpression of the mouse Jarid2 gene has been reported to repress cardiomyocyte proliferation through it close interaction with retinoblastoma protein (Rb), a master cell cycle regulator.[7][10][13] Retinoblastoma-binding protein-2 and the human SMCX protein share regions of homology between mice and humans.[1]

Model organisms

Jarid2 knockout mouse phenotype
Characteristic Phenotype
Homozygote viability Abnormal
Recessive lethal study Abnormal
Fertility Normal
Body weight Normal
Anxiety Normal
Neurological assessment Normal
Grip strength Normal
Hot plate Normal
Dysmorphology Normal
Indirect calorimetry Normal
Glucose tolerance test Normal
Auditory brainstem response Normal
DEXA Normal
Radiography Normal
Body temperature Normal
Eye morphology Normal
Clinical chemistry Normal
Plasma immunoglobulins Normal
Haematology Normal
Peripheral blood lymphocytes Normal
Micronucleus test Normal
Heart weight Normal
Skin Histopathology Normal
Brain histopathology Normal
Salmonella infection Normal[14]
Citrobacter infection Normal[15]
All tests and analysis from[16][17]

Model organisms have been used in the study of JARID2 function. A conditional knockout mouse line, called Jarid2tm1a(KOMP)Wtsi[18][19] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[20][21][22]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[16][23] Twenty six tests were carried out and two phenotypes were reported. Homozygous mutant embryos were identified during gestation but almost half showed signs of oedema, and in a separate study, only 1% survived until weaning (significantly less than the Mendelian ratio). The remaining tests were carried out on heterozygous mutant adult mice; no significant abnormalities were observed in these animals.[16]

References

  1. 1.0 1.1 Berge-Lefranc JL, Jay P, Massacrier A, Cau P, Mattei MG, Bauer S, Marsollier C, Berta P, Fontes M (Feb 1997). "Characterization of the human jumonji gene". Hum Mol Genet. 5 (10): 1637–41. doi:10.1093/hmg/5.10.1637. PMID 8894700.
  2. "Entrez Gene: JARID2 jumonji, AT rich interactive domain 2".
  3. 3.0 3.1 3.2 3.3 3.4 Kim TG, Kraus JC, Chen J, Lee Y (2004). "Jumonji, a critical factor for cardiac development, functions as a transcriptional repressor". J. Biol. Chem. 278 (43): 42247–55. doi:10.1074/jbc.M307386200. PMID 12890668.
  4. Mysliwiec MR, Kim TG, Lee Y (2007). "Characterization of zinc finger protein 496 that interacts with jumonji/jarid2". FEBS Letters. 581 (14): 2633–40.
  5. Takahashi M, Kojima M, Nakajima K, Suzuki-Migishima R, Motegi Y, Yokoyama M, Takeuchi, T (2004). "Cardiac abnormalities cause early lethality of jumonji mutant mice". Biochemical and Biophysical Research Communications. 324 (4): 1319–23.
  6. Toyoda M, Kojima M, Takeuchi T (2000). "Jumonji is a nuclear protein that participates in the negative regulation of cell growth". Biochemical and Biophysical Research Communications. 274 (2): 332–6.
  7. 7.0 7.1 7.2 Klassen SS, Rabkin SW (2008). "Nitric oxide induces gene expression of jumonji and retinoblastoma 2 protein while reducing expression of atrial natriuretic peptide precursor type B in cardiomyocytes". Folia Biologica. 54 (2): 65–70.
  8. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Helin K (2010). "JARID2 regulates binding of the polycomb repressive complex 2 to target genes in ES cells". Nature. 464 (7286): 306–10.
  9. Son J, Shen SS, Margueron R, Reinberg D (2013). "Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin". Genes & Development. 27 (24): 2663–77.
  10. 10.0 10.1 Jung J, Mysliwiec MR, Lee Y (2005). "Roles of Jumonji in mouse embryonic development". Developmental Dynamics. 232 (1): 21–32.
  11. Motoyama J, Kitajima K, Kojima M, Kondo S, Takeuchi T (1997). "Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice". Mechanisms of Development. 66 (1–2): 27–37.
  12. Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, Higashinakagawa T (1995). "Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation". Genes & Development. 9 (10): 1211–22.
  13. Mysliwiec MR, Chen J, Powers PA, Bartley CR, Schneider MD, Lee Y (2000). "Generation of a conditional null allele of jumonji". Genesis. 44 (9): 407–11.
  14. "Salmonella infection data for Jarid2". Wellcome Trust Sanger Institute.
  15. "Citrobacter infection data for Jarid2". Wellcome Trust Sanger Institute.
  16. 16.0 16.1 16.2 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x.
  17. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  18. "International Knockout Mouse Consortium".
  19. "Mouse Genome Informatics".
  20. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  21. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  22. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  23. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.