RPGRIP1: Difference between revisions
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
{{Infobox protein family | |||
| Symbol = X-linked retinitis pigmentosa GTPase regulator-interacting protein 1 | |||
| | | Name = | ||
| | | image = Human RPGRIP1 C2 domain.png | ||
| | | width = | ||
| | | caption = Crystal structure of the RPGR-interacting domain (RID) of RPGRIP1, PDB code [http://www.rcsb.org/pdb/explore/explore.do?structureId=4QAM 4qam]. Alpha helices are in red, beta strands in gold. | ||
| | | Pfam = PF00168 | ||
| Pfam_clan = | |||
| SMART = | |||
| PROSITE = | |||
| MEROPS = | |||
| SCOP = 4qam | |||
| CATH = 4qam | |||
| TCDB = | |||
| OPM family = | |||
| OPM protein = | |||
| CAZy = | |||
| CDD = | |||
| InterPro = IPR031134 | |||
}} | }} | ||
{{Infobox_gene}} | |||
'''X-linked retinitis pigmentosa GTPase regulator-interacting protein 1''' is an [[protein]] in the [[Cilium|ciliary transition zone]] that in humans is encoded by the ''RPGRIP1'' [[gene]].<ref name="pmid10958647">{{cite journal | vauthors = Boylan JP, Wright AF | title = Identification of a novel protein interacting with RPGR | journal = Human Molecular Genetics | volume = 9 | issue = 14 | pages = 2085–93 | date = September 2000 | pmid = 10958647 | pmc = | doi = 10.1093/hmg/9.14.2085 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: RPGRIP1 retinitis pigmentosa GTPase regulator interacting protein 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=57096| accessdate = }}</ref> RPGRIP1 is a [[Protein quaternary structure|multi-domain protein]] containing a [[Coiled coil|coiled-coil domain]] at the [[N-terminus]], two [[C2 domain|C2 domains]] and a [[C-terminus|C-terminal]] RPGR-interacting domain (RID). Defects in the gene result in the [[Leber's congenital amaurosis|Leber congenital amaurosis]] (LCA) syndrome<ref>{{cite journal | vauthors = Dryja TP, Adams SM, Grimsby JL, McGee TL, Hong DH, Li T, Andréasson S, Berson EL | title = Null RPGRIP1 alleles in patients with Leber congenital amaurosis | journal = American Journal of Human Genetics | volume = 68 | issue = 5 | pages = 1295–8 | date = May 2001 | pmid = 11283794 | pmc = 1226111 | doi = 10.1086/320113 }}</ref> and in the eye disease [[glaucoma]].<ref>{{cite journal | vauthors = Fernández-Martínez L, Letteboer S, Mardin CY, Weisschuh N, Gramer E, Weber BH, Rautenstrauss B, Ferreira PA, Kruse FE, Reis A, Roepman R, Pasutto F | title = Evidence for RPGRIP1 gene as risk factor for primary open angle glaucoma | journal = European Journal of Human Genetics | volume = 19 | issue = 4 | pages = 445–51 | date = April 2011 | pmid = 21224891 | pmc = 3060327 | doi = 10.1038/ejhg.2010.217 }}</ref> | |||
== Interactions == | |||
RPGRIP1 has been shown to [[Protein-protein interaction|interact]] with [[Retinitis pigmentosa GTPase regulator]].<ref name="pmid10958648">{{cite journal | vauthors = Roepman R, Bernoud-Hubac N, Schick DE, Maugeri A, Berger W, Ropers HH, Cremers FP, Ferreira PA | title = The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors | journal = Human Molecular Genetics | volume = 9 | issue = 14 | pages = 2095–105 | date = September 2000 | pmid = 10958648 | doi = 10.1093/hmg/9.14.2095 }}</ref> RPGRIP1 interacts with RPGR via its RPGR-interacting domain (RID), which folds into a [[C2 domain]] architecture and interacts with RPGR at three different locations: A [[Beta sheet|β strand]] of the RID interacting with the large loop of RPGR, at a [[Hydrophobic effect|hydrophobic interaction]] site, and via the N-terminal region of the RID.<ref>{{cite journal | vauthors = Remans K, Bürger M, Vetter IR, Wittinghofer A | title = C2 domains as protein-protein interaction modules in the ciliary transition zone | journal = Cell Reports | volume = 8 | issue = 1 | pages = 1–9 | date = July 2014 | pmid = 24981858 | doi = 10.1016/j.celrep.2014.05.049 }}</ref> | |||
== References == | |||
{{ | {{reflist}} | ||
}} | |||
== Further reading == | |||
{{refbegin}} | |||
==Further reading== | * {{cite journal | vauthors = Hong DH, Yue G, Adamian M, Li T | title = Retinitis pigmentosa GTPase regulator (RPGRr)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium | journal = The Journal of Biological Chemistry | volume = 276 | issue = 15 | pages = 12091–9 | date = April 2001 | pmid = 11104772 | doi = 10.1074/jbc.M009351200 }} | ||
{{refbegin | * {{cite journal | vauthors = Gerber S, Perrault I, Hanein S, Barbet F, Ducroq D, Ghazi I, Martin-Coignard D, Leowski C, Homfray T, Dufier JL, Munnich A, Kaplan J, Rozet JM | title = Complete exon-intron structure of the RPGR-interacting protein (RPGRIP1) gene allows the identification of mutations underlying Leber congenital amaurosis | journal = European Journal of Human Genetics | volume = 9 | issue = 8 | pages = 561–71 | date = August 2001 | pmid = 11528500 | doi = 10.1038/sj.ejhg.5200689 }} | ||
* {{cite journal | vauthors = Mavlyutov TA, Zhao H, Ferreira PA | title = Species-specific subcellular localization of RPGR and RPGRIP isoforms: implications for the phenotypic variability of congenital retinopathies among species | journal = Human Molecular Genetics | volume = 11 | issue = 16 | pages = 1899–907 | date = August 2002 | pmid = 12140192 | doi = 10.1093/hmg/11.16.1899 }} | |||
* {{cite journal | vauthors = Hameed A, Abid A, Aziz A, Ismail M, Mehdi SQ, Khaliq S | title = Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy | journal = Journal of Medical Genetics | volume = 40 | issue = 8 | pages = 616–9 | date = August 2003 | pmid = 12920076 | pmc = 1735563 | doi = 10.1136/jmg.40.8.616 }} | |||
* {{cite journal | vauthors = Shu X, Fry AM, Tulloch B, Manson FD, Crabb JW, Khanna H, Faragher AJ, Lennon A, He S, Trojan P, Giessl A, Wolfrum U, Vervoort R, Swaroop A, Wright AF | title = RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin | journal = Human Molecular Genetics | volume = 14 | issue = 9 | pages = 1183–97 | date = May 2005 | pmid = 15772089 | doi = 10.1093/hmg/ddi129 }} | |||
* {{cite journal | vauthors = Lu X, Guruju M, Oswald J, Ferreira PA | title = Limited proteolysis differentially modulates the stability and subcellular localization of domains of RPGRIP1 that are distinctly affected by mutations in Leber's congenital amaurosis | journal = Human Molecular Genetics | volume = 14 | issue = 10 | pages = 1327–40 | date = May 2005 | pmid = 15800011 | pmc = 1769350 | doi = 10.1093/hmg/ddi143 }} | |||
*{{cite journal | * {{cite journal | vauthors = Lu X, Ferreira PA | title = Identification of novel murine- and human-specific RPGRIP1 splice variants with distinct expression profiles and subcellular localization | journal = Investigative Ophthalmology & Visual Science | volume = 46 | issue = 6 | pages = 1882–90 | date = June 2005 | pmid = 15914599 | pmc = 1769349 | doi = 10.1167/iovs.04-1286 }} | ||
*{{cite journal | * {{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | date = October 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }} | ||
* {{cite journal | vauthors = Booij JC, Florijn RJ, ten Brink JB, Loves W, Meire F, van Schooneveld MJ, de Jong PT, Bergen AA | title = Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa | journal = Journal of Medical Genetics | volume = 42 | issue = 11 | pages = e67 | date = November 2005 | pmid = 16272259 | pmc = 1735944 | doi = 10.1136/jmg.2005.035121 }} | |||
*{{cite journal | * {{cite journal | vauthors = Roepman R, Letteboer SJ, Arts HH, van Beersum SE, Lu X, Krieger E, Ferreira PA, Cremers FP | title = Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 102 | issue = 51 | pages = 18520–5 | date = December 2005 | pmid = 16339905 | pmc = 1317916 | doi = 10.1073/pnas.0505774102 }} | ||
* {{cite journal | vauthors = Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Schwartz SB, Roman AJ, Stone EM | title = Leber congenital amaurosis caused by an RPGRIP1 mutation shows treatment potential | journal = Ophthalmology | volume = 114 | issue = 5 | pages = 895–8 | date = May 2007 | pmid = 17306875 | doi = 10.1016/j.ophtha.2006.10.028 }} | |||
*{{cite journal | * {{cite journal | vauthors = Arts HH, Doherty D, van Beersum SE, Parisi MA, Letteboer SJ, Gorden NT, Peters TA, Märker T, Voesenek K, Kartono A, Ozyurek H, Farin FM, Kroes HY, Wolfrum U, Brunner HG, Cremers FP, Glass IA, Knoers NV, Roepman R | title = Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome | journal = Nature Genetics | volume = 39 | issue = 7 | pages = 882–8 | date = July 2007 | pmid = 17558407 | doi = 10.1038/ng2069 }} | ||
* {{cite journal | vauthors = Patil H, Guruju MR, Cho KI, Yi H, Orry A, Kim H, Ferreira PA | title = Structural and functional plasticity of subcellular tethering, targeting and processing of RPGRIP1 by RPGR isoforms | journal = Biology Open | volume = 1 | issue = 2 | pages = 140–60 | date = February 2012 | pmid = 23213406 | doi = 10.1242/bio.2011489 }} | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
}} | |||
{{refend}} | {{refend}} | ||
{{Ciliary proteins}} | |||
{{ | {{gene-14-stub}} | ||
Revision as of 09:26, 10 September 2017
File:Human RPGRIP1 C2 domain.png Crystal structure of the RPGR-interacting domain (RID) of RPGRIP1, PDB code 4qam. Alpha helices are in red, beta strands in gold. | |||||||||
Identifiers | |||||||||
---|---|---|---|---|---|---|---|---|---|
Symbol | X-linked retinitis pigmentosa GTPase regulator-interacting protein 1 | ||||||||
Pfam | PF00168 | ||||||||
InterPro | IPR031134 | ||||||||
CATH | 4qam | ||||||||
SCOP | 4qam | ||||||||
SUPERFAMILY | 4qam | ||||||||
|
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
X-linked retinitis pigmentosa GTPase regulator-interacting protein 1 is an protein in the ciliary transition zone that in humans is encoded by the RPGRIP1 gene.[1][2] RPGRIP1 is a multi-domain protein containing a coiled-coil domain at the N-terminus, two C2 domains and a C-terminal RPGR-interacting domain (RID). Defects in the gene result in the Leber congenital amaurosis (LCA) syndrome[3] and in the eye disease glaucoma.[4]
Interactions
RPGRIP1 has been shown to interact with Retinitis pigmentosa GTPase regulator.[5] RPGRIP1 interacts with RPGR via its RPGR-interacting domain (RID), which folds into a C2 domain architecture and interacts with RPGR at three different locations: A β strand of the RID interacting with the large loop of RPGR, at a hydrophobic interaction site, and via the N-terminal region of the RID.[6]
References
- ↑ Boylan JP, Wright AF (September 2000). "Identification of a novel protein interacting with RPGR". Human Molecular Genetics. 9 (14): 2085–93. doi:10.1093/hmg/9.14.2085. PMID 10958647.
- ↑ "Entrez Gene: RPGRIP1 retinitis pigmentosa GTPase regulator interacting protein 1".
- ↑ Dryja TP, Adams SM, Grimsby JL, McGee TL, Hong DH, Li T, Andréasson S, Berson EL (May 2001). "Null RPGRIP1 alleles in patients with Leber congenital amaurosis". American Journal of Human Genetics. 68 (5): 1295–8. doi:10.1086/320113. PMC 1226111. PMID 11283794.
- ↑ Fernández-Martínez L, Letteboer S, Mardin CY, Weisschuh N, Gramer E, Weber BH, Rautenstrauss B, Ferreira PA, Kruse FE, Reis A, Roepman R, Pasutto F (April 2011). "Evidence for RPGRIP1 gene as risk factor for primary open angle glaucoma". European Journal of Human Genetics. 19 (4): 445–51. doi:10.1038/ejhg.2010.217. PMC 3060327. PMID 21224891.
- ↑ Roepman R, Bernoud-Hubac N, Schick DE, Maugeri A, Berger W, Ropers HH, Cremers FP, Ferreira PA (September 2000). "The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors". Human Molecular Genetics. 9 (14): 2095–105. doi:10.1093/hmg/9.14.2095. PMID 10958648.
- ↑ Remans K, Bürger M, Vetter IR, Wittinghofer A (July 2014). "C2 domains as protein-protein interaction modules in the ciliary transition zone". Cell Reports. 8 (1): 1–9. doi:10.1016/j.celrep.2014.05.049. PMID 24981858.
Further reading
- Hong DH, Yue G, Adamian M, Li T (April 2001). "Retinitis pigmentosa GTPase regulator (RPGRr)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium". The Journal of Biological Chemistry. 276 (15): 12091–9. doi:10.1074/jbc.M009351200. PMID 11104772.
- Gerber S, Perrault I, Hanein S, Barbet F, Ducroq D, Ghazi I, Martin-Coignard D, Leowski C, Homfray T, Dufier JL, Munnich A, Kaplan J, Rozet JM (August 2001). "Complete exon-intron structure of the RPGR-interacting protein (RPGRIP1) gene allows the identification of mutations underlying Leber congenital amaurosis". European Journal of Human Genetics. 9 (8): 561–71. doi:10.1038/sj.ejhg.5200689. PMID 11528500.
- Mavlyutov TA, Zhao H, Ferreira PA (August 2002). "Species-specific subcellular localization of RPGR and RPGRIP isoforms: implications for the phenotypic variability of congenital retinopathies among species". Human Molecular Genetics. 11 (16): 1899–907. doi:10.1093/hmg/11.16.1899. PMID 12140192.
- Hameed A, Abid A, Aziz A, Ismail M, Mehdi SQ, Khaliq S (August 2003). "Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy". Journal of Medical Genetics. 40 (8): 616–9. doi:10.1136/jmg.40.8.616. PMC 1735563. PMID 12920076.
- Shu X, Fry AM, Tulloch B, Manson FD, Crabb JW, Khanna H, Faragher AJ, Lennon A, He S, Trojan P, Giessl A, Wolfrum U, Vervoort R, Swaroop A, Wright AF (May 2005). "RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin". Human Molecular Genetics. 14 (9): 1183–97. doi:10.1093/hmg/ddi129. PMID 15772089.
- Lu X, Guruju M, Oswald J, Ferreira PA (May 2005). "Limited proteolysis differentially modulates the stability and subcellular localization of domains of RPGRIP1 that are distinctly affected by mutations in Leber's congenital amaurosis". Human Molecular Genetics. 14 (10): 1327–40. doi:10.1093/hmg/ddi143. PMC 1769350. PMID 15800011.
- Lu X, Ferreira PA (June 2005). "Identification of novel murine- and human-specific RPGRIP1 splice variants with distinct expression profiles and subcellular localization". Investigative Ophthalmology & Visual Science. 46 (6): 1882–90. doi:10.1167/iovs.04-1286. PMC 1769349. PMID 15914599.
- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
- Booij JC, Florijn RJ, ten Brink JB, Loves W, Meire F, van Schooneveld MJ, de Jong PT, Bergen AA (November 2005). "Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa". Journal of Medical Genetics. 42 (11): e67. doi:10.1136/jmg.2005.035121. PMC 1735944. PMID 16272259.
- Roepman R, Letteboer SJ, Arts HH, van Beersum SE, Lu X, Krieger E, Ferreira PA, Cremers FP (December 2005). "Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations". Proceedings of the National Academy of Sciences of the United States of America. 102 (51): 18520–5. doi:10.1073/pnas.0505774102. PMC 1317916. PMID 16339905.
- Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Schwartz SB, Roman AJ, Stone EM (May 2007). "Leber congenital amaurosis caused by an RPGRIP1 mutation shows treatment potential". Ophthalmology. 114 (5): 895–8. doi:10.1016/j.ophtha.2006.10.028. PMID 17306875.
- Arts HH, Doherty D, van Beersum SE, Parisi MA, Letteboer SJ, Gorden NT, Peters TA, Märker T, Voesenek K, Kartono A, Ozyurek H, Farin FM, Kroes HY, Wolfrum U, Brunner HG, Cremers FP, Glass IA, Knoers NV, Roepman R (July 2007). "Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome". Nature Genetics. 39 (7): 882–8. doi:10.1038/ng2069. PMID 17558407.
- Patil H, Guruju MR, Cho KI, Yi H, Orry A, Kim H, Ferreira PA (February 2012). "Structural and functional plasticity of subcellular tethering, targeting and processing of RPGRIP1 by RPGR isoforms". Biology Open. 1 (2): 140–60. doi:10.1242/bio.2011489. PMID 23213406.
This article on a gene on human chromosome 14 is a stub. You can help Wikipedia by expanding it. |