Renal artery stenosis pathophysiology

Jump to navigation Jump to search

Renal artery stenosis Microchapters


Patient Information


Historical Perspective




Differentiating Renal artery stenosis from other Diseases

Epidemiology and Demographics

Risk Factors


Natural History, Complications and Prognosis


Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings



Echocardiography and Ultrasound

CT scan


Other Imaging Findings

Other Diagnostic Studies


Medical Therapy



Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Renal artery stenosis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides


American Roentgen Ray Society Images of Renal artery stenosis pathophysiology

All Images
Echo & Ultrasound
CT Images

Ongoing Trials at Clinical

US National Guidelines Clearinghouse

NICE Guidance

FDA on Renal artery stenosis pathophysiology

CDC on Renal artery stenosis pathophysiology

Renal artery stenosis pathophysiology in the news

Blogs on Renal artery stenosis pathophysiology

Directions to Hospitals Treating Renal artery stenosis

Risk calculators and risk factors for Renal artery stenosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Shivam Singla, M.D.[2]


The reduction in renal blood flow secondary to renal artery stenosis stimulates renin release from the juxtaglomerular apparatus through activation of the tubuloglomerular feedback, baroreceptor reflex, and the sympathetic nervous system. Elevated angiotensin II activities in turn cause elevation of the arterial pressure and other effects including aldosterone secretion, sodium retention, and left ventricular hypertrophy and remodeling.



Glomerular filtration rate (GFR) is auto-regulated with the help of angiotensin II and numerous other modulators. The GFR gets affected when the renal perfusion drops below 70 mmHg[4]. the apparent change in GFR is observed once the arterial lumen narrows by more than 50%. Numerous studies reported that GFR is reduced when altogether there is a reduction in renal perfusion pressure by more than 40% and a reduction in mean renal blood flow by 30%. However, even after this, the kidneys cortex and medulla can adapt without the development of severe hypoxia. So early disease can be managed with the medical approach and that can prevent the development of progressive function loss and fibrosis. But in cases with more significant stenosis around 70-80%, there is the development of apparent cortical hypoxia and this hypoxia further leads to the rarefaction of microvessels and ultimately leads to the development of interstitial fibrosis[3]. Therefore the loss of renal function and progressive renal disease. Eventually, it becomes irreversible and restoration of blood flow to the kidneys will not help in getting back the kidney functions.

Illustration of renal artery stenosis


  1. Gomez RA, Sequeira Lopez ML (March 2009). "Who and where is the renal baroreceptor?: the connexin hypothesis". Kidney Int. 75 (5): 460–2. doi:10.1038/ki.2008.536. PMC 3025775. PMID 19219002.
  2. Garovic, VD.; Textor, SC. (2005). "Renovascular hypertension and ischemic nephropathy". Circulation. 112 (9): 1362–74. doi:10.1161/CIRCULATIONAHA.104.492348. PMID 16129817. Unknown parameter |month= ignored (help)
  3. 3.0 3.1 Textor SC (August 2004). "Ischemic nephropathy: where are we now?". J Am Soc Nephrol. 15 (8): 1974–82. doi:10.1097/01.ASN.0000133699.97353.24. PMID 15284283.
  4. "Renal Artery Stenosis | NIDDK".