PIGF

Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Phosphatidylinositol-glycan biosynthesis class F protein is a protein that in humans is encoded by the PIGF gene.[1][2][3]

Function

This gene encodes a protein that is involved in glycosylphosphatidylinositol (GPI)-anchor biosynthesis. The GPI-anchor is a glycolipid which contains three mannose molecules in its core backbone. The GPI-anchor is found on many blood cells and serves to anchor proteins to the cell surface. This protein and another GPI synthesis protein, PIGO, function in the transfer of ethanolaminephosphate (EtNP) to the third mannose in GPI. At least two alternatively spliced transcripts encoding distinct isoforms have been found for this gene.[3]

See also

Model organisms

Model organisms have been used in the study of PIGF function. A conditional knockout mouse line called Pigftm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[4] Male and female animals underwent a standardized phenotypic screen[5] to determine the effects of deletion.[6][7][8][9] Additional screens performed: - In-depth immunological phenotyping[10]

References

  1. Ohishi K, Inoue N, Endo Y, Fujita T, Takeda J, Kinoshita T (Oct 1995). "Structure and chromosomal localization of the GPI-anchor synthesis gene PIGF and its pseudogene psi PIGF". Genomics. 29 (3): 804–7. doi:10.1006/geno.1995.9929. PMID 8575782.
  2. Inoue N, Kinoshita T, Orii T, Takeda J (Apr 1993). "Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy". The Journal of Biological Chemistry. 268 (10): 6882–5. PMID 8463218.
  3. 3.0 3.1 "Entrez Gene: PIGF phosphatidylinositol glycan anchor biosynthesis, class F".
  4. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  5. 5.0 5.1 "International Mouse Phenotyping Consortium".
  6. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  7. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  8. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  9. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  10. 10.0 10.1 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

  • Kinoshita T, Takahashi M, Inoue N, Miyata T, Takeda J (Feb 1994). "Expression cloning of genes for GPI-anchor biosynthesis". Brazilian Journal of Medical and Biological Research. 27 (2): 127–32. PMID 8081220.
  • Hong Y, Maeda Y, Watanabe R, Inoue N, Ohishi K, Kinoshita T (Jul 2000). "Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol". The Journal of Biological Chemistry. 275 (27): 20911–9. doi:10.1074/jbc.M001913200. PMID 10781593.
  • Shishioh N, Hong Y, Ohishi K, Ashida H, Maeda Y, Kinoshita T (Mar 2005). "GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol". The Journal of Biological Chemistry. 280 (10): 9728–34. doi:10.1074/jbc.M413755200. PMID 15632136.
  • Li W, Shen W, Gill R, Corbly A, Jones B, Belagaje R, Zhang Y, Tang S, Chen Y, Zhai Y, Wang G, Wagle A, Hui K, Westmore M, Hanson J, Chen YF, Simons M, Singh J (May 2006). "High-resolution quantitative computed tomography demonstrating selective enhancement of medium-size collaterals by placental growth factor-1 in the mouse ischemic hindlimb". Circulation. 113 (20): 2445–53. doi:10.1161/CIRCULATIONAHA.105.586818. PMID 16702473.
  • Yano K, Liaw PC, Mullington JM, Shih SC, Okada H, Bodyak N, Kang PM, Toltl L, Belikoff B, Buras J, Simms BT, Mizgerd JP, Carmeliet P, Karumanchi SA, Aird WC (Jun 2006). "Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality" (PDF). The Journal of Experimental Medicine. 203 (6): 1447–58. doi:10.1084/jem.20060375. PMC 2118329. PMID 16702604.
  • Zheng Y, Murakami M, Takahashi H, Yamauchi M, Kiba A, Yamaguchi S, Yabana N, Alitalo K, Shibuya M (Sep 2006). "Chimeric VEGF-E(NZ7)/PlGF promotes angiogenesis via VEGFR-2 without significant enhancement of vascular permeability and inflammation". Arteriosclerosis, Thrombosis, and Vascular Biology. 26 (9): 2019–26. doi:10.1161/01.ATV.0000233336.53574.a1. PMID 16794222.
  • Mohammed KA, Nasreen N, Tepper RS, Antony VB (Feb 2007). "Cyclic stretch induces PlGF expression in bronchial airway epithelial cells via nitric oxide release". American Journal of Physiology. Lung Cellular and Molecular Physiology. 292 (2): L559–66. doi:10.1152/ajplung.00075.2006. PMID 17028267.