The MT-ND4L gene is located in human mitochondrial DNA from base pair 10,469 to 10,765.[1][5] An unusual feature of the human MT-ND4L gene is the 7-nucleotide gene overlap of its last three codons (5'-CAA TGC TAA-3' coding for Gln, Cys and Stop) with the first three codons of the MT-ND4 gene (5'-ATG CTA AAA-3' coding for amino acids Met-Leu-Lys).[5] With respect to the MT-ND4Lreading frame (+1), the MT-ND4 gene starts in the +3 reading frame: [CAA][TGC][TAA]AA versus CA[ATG][CTA][AAA].
The MT-ND4L gene produces an 11 kDa protein composed of 98 amino acids.[6][7] MT-ND4L is one of seven mitochondrially-encoded subunits of the enzyme NADH dehydrogenase (ubiquinone). Also known as Complex I, it is the largest of the respiratory complexes. The structure is L-shaped with a long, hydrophobictransmembrane domain and a hydrophilic domain for the peripheral arm that includes all the known redox centres and the NADH binding site. MT-ND4L and the rest of the mitochondrially encoded subunits are the most hydrophobic of the subunits of Complex I and form the core of the transmembrane region.[2]
Function
MT-ND4L is a subunit of the respiratory chain Complex I that is believed to belong to the minimal assembly of core proteins required to catalyze NADH dehydrogenation and electron transfer to ubiquinone (coenzyme Q10).[8] Initially, NADH binds to Complex I and transfers two electrons to the isoalloxazine ring of the flavin mononucleotide (FMN) prosthetic arm to form FMNH2. The electrons are transferred through a series of iron-sulfur (Fe-S) clusters in the prosthetic arm and finally to coenzyme Q10 (CoQ), which is reduced to ubiquinol (CoQH2). The flow of electrons changes the redox state of the protein, resulting in a conformational change and pK shift of the ionizable side chain, which pumps four hydrogen ions out of the mitochondrial matrix.[2]
Clinical significance
Mitochondrial dysfunction resulting from variants of MT-ND4L, MT-ND1 and MT-ND2 have been linked to BMI in adults and implicated in metabolic disorders including obesity, diabetes and hypertension.[3]
A T>C mutation at position 10,663 in the mitochondrial gene MT-ND4L is known to cause Leber's Hereditary Optic Neuropathy (LHON). This mutation results in the replacement of the amino acid valine with alanine at position 65 of the protein ND4L, disrupting function of Complex I in the electron transport chain. It is unknown how this mutation leads to the loss of vision in LHON patients, but it may interrupt ATP production due to the impaired activity of Complex I. Mutations in other genes encoding subunits of Complex I, including MT-ND1, MT-ND2, MT-ND4, MT-ND5, and MT-ND6 are also known to cause LHON.[4]
Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ (Jun 2006). "Harvesting the fruit of the human mtDNA tree". Trends in Genetics. 22 (6): 339–45. doi:10.1016/j.tig.2006.04.001. PMID16678300.
Bodenteich A, Mitchell LG, Polymeropoulos MH, Merril CR (May 1992). "Dinucleotide repeat in the human mitochondrial D-loop". Human Molecular Genetics. 1 (2): 140. doi:10.1093/hmg/1.2.140-a. PMID1301157.
Lu X, Walker T, MacManus JP, Seligy VL (Jul 1992). "Differentiation of HT-29 human colonic adenocarcinoma cells correlates with increased expression of mitochondrial RNA: effects of trehalose on cell growth and maturation". Cancer Research. 52 (13): 3718–25. PMID1377597.
Marzuki S, Noer AS, Lertrit P, Thyagarajan D, Kapsa R, Utthanaphol P, Byrne E (Dec 1991). "Normal variants of human mitochondrial DNA and translation products: the building of a reference data base". Human Genetics. 88 (2): 139–45. doi:10.1007/bf00206061. PMID1757091.
Attardi G, Chomyn A, Doolittle RF, Mariottini P, Ragan CI (1987). "Seven unidentified reading frames of human mitochondrial DNA encode subunits of the respiratory chain NADH dehydrogenase". Cold Spring Harbor Symposia on Quantitative Biology. 51. 51 (1): 103–14. doi:10.1101/sqb.1986.051.01.013. PMID3472707.
Chomyn A, Cleeter MW, Ragan CI, Riley M, Doolittle RF, Attardi G (Oct 1986). "URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit". Science. 234 (4776): 614–8. doi:10.1126/science.3764430. PMID3764430.
Chomyn A, Mariottini P, Cleeter MW, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G (1985). "Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase". Nature. 314 (6012): 592–7. doi:10.1038/314592a0. PMID3921850.
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (Apr 1981). "Sequence and organization of the human mitochondrial genome". Nature. 290 (5806): 457–65. doi:10.1038/290457a0. PMID7219534.
Montoya J, Ojala D, Attardi G (Apr 1981). "Distinctive features of the 5'-terminal sequences of the human mitochondrial mRNAs". Nature. 290 (5806): 465–70. doi:10.1038/290465a0. PMID7219535.
Brown MD, Torroni A, Reckord CL, Wallace DC (1996). "Phylogenetic analysis of Leber's hereditary optic neuropathy mitochondrial DNA's indicates multiple independent occurrences of the common mutations". Human Mutation. 6 (4): 311–25. doi:10.1002/humu.1380060405. PMID8680405.
Arnason U, Xu X, Gullberg A (Feb 1996). "Comparison between the complete mitochondrial DNA sequences of Homo and the common chimpanzee based on nonchimeric sequences". Journal of Molecular Evolution. 42 (2): 145–52. doi:10.1007/BF02198840. PMID8919866.
Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B (Nov 1998). "Somatic mutations of the mitochondrial genome in human colorectal tumours". Nature Genetics. 20 (3): 291–3. doi:10.1038/3108. PMID9806551.
Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (Oct 1999). "Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA". Nature Genetics. 23 (2): 147. doi:10.1038/13779. PMID10508508.
Ingman M, Kaessmann H, Pääbo S, Gyllensten U (Dec 2000). "Mitochondrial genome variation and the origin of modern humans". Nature. 408 (6813): 708–13. doi:10.1038/35047064. PMID11130070.