Lisuride

Jump to navigation Jump to search
Lisuride
Clinical data
AHFS/Drugs.comInternational Drug Names
Routes of
administration
Oral, subcutaneous, transdermal
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability10-20% for lisuride hydrogen maleate
Protein bindingabout 15%
MetabolismHepatic
Elimination half-life2 hours
Excretionrenal and biliary in equal amounts
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
E number{{#property:P628}}
ECHA InfoCard{{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value).
Chemical and physical data
FormulaC20H26N4O
Molar mass338.447 g/mol
3D model (JSmol)
  (verify)

WikiDoc Resources for Lisuride

Articles

Most recent articles on Lisuride

Most cited articles on Lisuride

Review articles on Lisuride

Articles on Lisuride in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Lisuride

Images of Lisuride

Photos of Lisuride

Podcasts & MP3s on Lisuride

Videos on Lisuride

Evidence Based Medicine

Cochrane Collaboration on Lisuride

Bandolier on Lisuride

TRIP on Lisuride

Clinical Trials

Ongoing Trials on Lisuride at Clinical Trials.gov

Trial results on Lisuride

Clinical Trials on Lisuride at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Lisuride

NICE Guidance on Lisuride

NHS PRODIGY Guidance

FDA on Lisuride

CDC on Lisuride

Books

Books on Lisuride

News

Lisuride in the news

Be alerted to news on Lisuride

News trends on Lisuride

Commentary

Blogs on Lisuride

Definitions

Definitions of Lisuride

Patient Resources / Community

Patient resources on Lisuride

Discussion groups on Lisuride

Patient Handouts on Lisuride

Directions to Hospitals Treating Lisuride

Risk calculators and risk factors for Lisuride

Healthcare Provider Resources

Symptoms of Lisuride

Causes & Risk Factors for Lisuride

Diagnostic studies for Lisuride

Treatment of Lisuride

Continuing Medical Education (CME)

CME Programs on Lisuride

International

Lisuride en Espanol

Lisuride en Francais

Business

Lisuride in the Marketplace

Patents on Lisuride

Experimental / Informatics

List of terms related to Lisuride

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Lisuride (brand name in Germany Dopergin) is an anti-Parkinson's drug of the iso-ergoline class, chemically related to the dopaminergic ergoline Parkinson's drugs. Lisuride is described as free base (see table on the right) and as hydrogenmaleate salt.

Lisuride is used to lower prolactin and, in low doses, to prevent migraine attacks. The use of lisuride as initial anti-Parkinsonian treatment has been advocated, delaying the need for levodopa until lisuride becomes insufficient for controlling the Parkinsonian disability. Preliminary trials suggest that the dermal application of lisuride may be useful in the treatment of Parkinson's disease. Lisuride is not currently available in the US.


Lisuride (Dopergin, Proclacam, Revanil) is an antiparkinson agent of the iso-ergoline class, chemically related to the dopaminergic ergoline Parkinson's drugs. Lisuride is described as free base (see table on the right) and as hydrogen maleate salt.

Lisuride is used to lower prolactin and, in low doses, to prevent migraine attacks. The use of lisuride as initial anti-Parkinsonian treatment has been advocated, delaying the need for levodopa until lisuride becomes insufficient for controlling the Parkinsonian disability. Preliminary trials suggest that the dermal application of lisuride may be useful in the treatment of Parkinson's disease. As lisuride is very poorly absorbed when take orally and has a short half-life, continuous transdermal administration offers significant advantages and could make the compound a far more consistent therapeutic. Lisuride is not currently available in the US, as the drug was not a commercial success in comparison with other dopamine receptor agonist anti-parkinsonian compounds. It is still used clinically in a number of countries in the EU and is still commercially available in the UK and China.


A Study has failed to find any association between lisuride and fibrotic cardiac valvulopathy.[1]

Mode of action

Lisuride is a dopamine and serotonin receptor partial agonist. It has a high affinity for the dopamine D2, D3 and D4 receptors, as well as serotonin 5-HT1A[2] and 5-HT2A/C receptors.[3] While lisuride has a similar receptor binding profile to the more well-known and chemically similar ergoloid N,N-diethyl-lysergamide (LSD) and inhibits dorsal raphe serotonergic neurons in a similar fashion to LSD,[4] it lacks the psychedelic effects of its sister compound. It has been suggested that this may be because lisuride acts as an agonist at 5-HT1A and 5-HT2A subtypes but behaves as an antagonist at 5-HT2C, inhibiting the psychedelic effect.[5] Newer findings suggest that the lack of psychedelic action arises from the phenomenon of biased agonism. Stimulation of the 5-HT2A protomer within the 5-HT2A-mGlu2 receptor complex evokes psychedelic effects, while these effects do not occur during sole stimulation of monomeric 5-HT2A receptors. Accordingly, different G-proteins are involved.[6][7] Lisurid behaves as an agonist at the 5-HT2AR monomer. Since it competitively antagonises the effects of LSD, it may be regarded as a protomer antagonist of the 5-HT2A-mGluR heteromer.[8] GPCR oligomers are discrete entities and usually possess properties distinct from their parent monomeric receptors.

Commercial names

Name Country of Use
Arolac France
Cuvalit Germany
Dipergon Greece
Dopergin(e) Germany, Spain, France, China
Dopergine Belgium
Lysenyl Forte Czech Republic, Slovakia
Prolacam Australia
Revanil UK

History

Synthesis of lisuride was first described in 1960.

Indications

See also

Template:Ergolines Template:Antimigraine preparations Template:Dopamine agonists



References

  1. "Lisuride, a dopamine receptor ag... [Clin Neuropharmacol. 2006 Mar-Apr] - PubMed - NCBI". Retrieved 10 February 2014.
  2. Marona-Lewicka D, Kurrasch-Orbaugh DM, Selken JR, Cumbay MG, Lisnicchia JG, Nichols DE (October 2002). "Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine1A receptor-mediated behavioral effects overlap its other properties in rats". Psychopharmacology (Berl.). 164 (1): 93–107. doi:10.1007/s00213-002-1141-z. PMID 12373423.
  3. Egan CT, Herrick-Davis K, Miller K, Glennon RA, Teitler M (April 1998). "Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors". Psychopharmacology (Berl.). 136 (4): 409–14. doi:10.1007/s002130050585. PMID 9600588.
  4. Rogawski MA, Aghajanian GK (1979). "Response of central monoaminergic neurons to lisuride: comparison with LSD". Life Sci. 24 (14): 1289–1297. PMID 470543. line feed character in |title= at position 45 (help)
  5. Template:Cite doi
  6. Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J (2011). "Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists". Neurosci. Lett. 493 (3): 76–9. doi:10.1016/j.neulet.2011.01.046. PMC 3064746. PMID 21276828.
  7. González-Maeso J, Ang RL, Yuen T; et al. (2008). "Identification of a serotonin/glutamate receptor complex implicated in psychosis". Nature. 452 (7183): 93–7. doi:10.1038/nature06612. PMC 2743172. PMID 18297054.
  8. González-Maeso J et al. (2007): "Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior", Neuron, Bd. 53, S. 439. PMID 17270739