Aluminium phosphate
Names | |
---|---|
Other names
Aluminum phosphate
Aluminum monophosphate Phosphoric acid, aluminum salt (1:1) | |
Identifiers | |
| |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | Lua error in Module:Wikidata at line 879: attempt to index field 'wikibase' (a nil value). Lua error in Module:Wikidata at line 879: attempt to index field 'wikibase' (a nil value). |
PubChem CID
|
|
UNII | |
| |
| |
Properties | |
AlPO4 | |
Molar mass | 121.9529 g/mol |
Hazards | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Aluminium phosphate (AlPO4) is a chemical compound. The anhydrous form is found in nature as the mineral berlinite. Many synthetic forms[2] of anhydrous aluminium phosphate are known. They have framework structures similar to zeolites and some are used as catalysts or molecular sieves. The dihydrate, AlPO4·2H2O is found as the minerals variscite and meta-variscite.[3][4] A synthetic hydrated form, AlPO4·1.5H2O is also known.[5] Commercially, an aluminium phosphate gel is available.
Aluminium phosphate (berlinite)
AlPO4 is isoelectronic with Si2O4, silicon dioxide. Berlinite looks like quartz and has a structure that is similar to quartz with silicon replaced by Al and P. The AlO4 and PO4 tetrahedra alternate. Like quartz, AlPO4 exhibits chirality[6] and piezoelectric properties.[7] Crystalline AlPO4 (berlinite) when heated, converts to tridymite and cristobalite forms, and this mirrors the behaviour of silicon dioxide.[8]
Aluminium phosphate dihydrate (variscite and meta-variscite)
The structure can be regarded as an assembly of phosphate anions, aluminium cations and water. The aluminium cations are six-coordinate.[4]
Aluminophosphate molecular sieves
There are many of aluminium phosphate molecular sieves, generically known as "ALPOs". The first ones were reported in 1982.[9] They all share the same chemical composition of AlPO4 and have framework structures with microporous cavities. The frameworks are made up of alternating AlO4 and PO4 tetrahedra. The denser cavity-less crystalline AlPO4 mineral, berlinite, shares the same alternating AlO4 and PO4 tetrahedra.[8] The aluminophosphate framework structures vary one from another in the orientation of the AlO4 tetrahedra and PO4 tetrahedra to form different-sized cavities, and in this respect they are similar to the aluminosilicate zeolites, which differ in having electrically charged frameworks. A typical preparation of an aluminophosphate involves the hydrothermal reaction of phosphoric acid and aluminium in the form of hydroxide, an aluminium salt such as aluminium nitrate salt or alkoxide under controlled pH in the presence of organic amines.[10] These organic molecules act as templates (now termed structure directing agents, SDAs[2]) to direct the growth of the porous framework.[11]
Uses of aluminium phosphate gel
In medicine an aluminium phosphate sol is used as adsorbent for toxoid and in the dried form, which contains hydrated AlPO4, as an antacid.[12] Industrially the Al-PO4-H2O system is used as the basis of many adhesives, binders and cements.[8]
Naturally occurring aluminium phosphate
Although it is unstable to heat, in geologically stable regions like Australia and Southern Africa, aluminium phosphate is generally the most common form of phosphorus in soils, as it forms when phosphate in rainwater reacts with dissolved aluminium in the soil. Although it is not as insoluble as many other components of soils in those regions, aluminium phosphate can form exceedingly insoluble double salts known as taranakites with many essential elements for plant growth that are normally highly soluble in water, such as potassium and nitrogen.[citation needed]
In coastal areas of South Africa and Namibia, the combination of exceedingly old soils and a high input of phosphate from very fertile oceans due to the Benguela Current causes aluminium phosphate to accumulate to form a concentrated mineral known as aluminium phosphate rock. Only in recent years has there been any interest in the mining of these considerable deposits as a source of phosphorus for agriculture, but there could be considerable economic value if low-cost treatment becomes possible.[citation needed]
References
- ↑ Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8
- ↑ 2.0 2.1 Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure Ruren Xu, Wenqin Pang, Jihong Yu, Qisheng Huo, Jiesheng Chen, John Wiley & Sons, 2007, ISBN 978-0-470-82233-3
- ↑ Roncal-Herrero, T., Rodriguez-Blanco, J.D., Benning, L.G., Oelkers, E.H. (2009) Precipitation of Iron and Aluminum Phosphates Directly from Aqueous Solution as a Function of Temperature from 50 to 200°C. Crystal Growth & Design, 9, 5197-5205. doi: 10.1021/cg900654m.
- ↑ 4.0 4.1 Corbridge DEC 2013, Phosphorus: Chemistry, Biochemistry and Technology, 6th ed., CRC Press, Boca Raton, Florida, ISBN 978-1-4398-4088-7
- ↑ Lagno, Felipe; Demopoulos, George P. (2005). "Synthesis of Hydrated Aluminum Phosphate, AlPO4·1.5H2O (AlPO4−H3), by Controlled Reactive Crystallization in Sulfate Media". Industrial & Engineering Chemistry Research. 44 (21): 8033–8038. doi:10.1021/ie0505559. ISSN 0888-5885.
- ↑ Tanaka, Yoshikazu; Kojima, Taro; Takata, Yasutaka; Chainani, Ashish; Lovesey, Stephen W.; Knight, Kevin S.; Takeuchi, Tomoyuki; Oura, Masaki; Senba, Yasunori; Ohashi, Haruhiko; Shin, Shik (2010). "Determination of structural chirality of berlinite and quartz using resonant x-ray diffraction with circularly polarized x-rays". Physical Review B. 81 (14). doi:10.1103/PhysRevB.81.144104. ISSN 1098-0121.
- ↑ Crystal growth of an α-quartz like piezoelectric material, berlinite, Motchany A. I.,Chvanski P. P., Annales de Chimie Science des Materiaux properties, 2001, 26, 199
- ↑ 8.0 8.1 8.2 Template:Greenwood&Earnshaw
- ↑ Wilson, Stephen T.; Lok, Brent M.; Messina, Celeste A.; Cannan, Thomas R.; Flanigen, Edith M. (1982). "Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids". Journal of the American Chemical Society. 104 (4): 1146–1147. doi:10.1021/ja00368a062. ISSN 0002-7863.
- ↑ Zeolites in Industrial Separation and Catalysis Santi Kulprathipanja, John Wiley & Sons, 26 Jan 2010
- ↑ Zeolites and Catalysis, Jiri Cejka, Avelino Corma, Stacey Zones, John Wiley & Sons, 27 May 2010,ISBN 978-3-527-32514-6
- ↑ Contemporary Drug Synthesis, Jie Jack Li, Douglas S. Johnson, Drago R. Sliskovic, Bruce D. Roth., John Wiley and Sons, 2004, ISBN 0471-21-480-9
External links
- Pages with script errors
- Chemical articles with multiple compound IDs
- Multiple chemicals in an infobox that need indexing
- Articles without EBI source
- Articles without KEGG source
- Chemical articles with unknown parameter in Chembox
- ECHA InfoCard ID from Wikidata
- Chembox having DSD data
- Articles containing unverified chemical infoboxes
- All articles with unsourced statements
- Articles with unsourced statements from January 2015
- Articles with invalid date parameter in template
- Drug
- Phosphates
- Aluminium compounds
- Dehydrating agents