Hypoparathyroidism pathophysiology

Jump to navigation Jump to search

Hypoparathyroidism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypoparathyroidism from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypoparathyroidism pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hypoparathyroidism pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypoparathyroidism pathophysiology

CDC on Hypoparathyroidism pathophysiology

Hypoparathyroidism pathophysiology in the news

Blogs on Hypoparathyroidism pathophysiology

Directions to Hospitals Treating Hypoparathyroidism

Risk calculators and risk factors for Hypoparathyroidism pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

The exact pathogenesis of [disease name] is not fully understood.

OR

It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].

OR

[Pathogen name] is usually transmitted via the [transmission route] route to the human host.

OR

Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.

OR


[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].

OR

The progression to [disease name] usually involves the [molecular pathway].

OR

The pathophysiology of [disease/malignancy] depends on the histological subtype.

Pathophysiology

Parathyroid, Vitamin D, and mineral homeostasis

The effect of parathyroid hormone on mineral metabolism is as follows:[1][2]

Effect of minerals and vitamin D on parathyroid hormone:

The sequence of events is shown in the algorithm below:

 
 
 
 
 
 
 
 
 
 
 
Parathyroid hormone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kidney
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Decreased excretion of magnesium
 
 
 
Increasead conversion of inactive 25-hydroyxvitamin D to the active 1,25-dihydroyxvitamin D
 
 
Increase excretion of inorganic phosphate
 
 
 
 
Decrease excretion of calcium
 
 
 
 
 
Increased resorption of bone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Increased serum concentration of magnesium
 
 
 
Increased absorption of calcium from gut
 
 
Decreased serum concentration of inorganic phosphate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prevents precipitation of calcium phosphate in bones
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Increased serum concentration of calcium
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Calcium-sensing receptors


Pathogenesis

  • There is deficiency of parathyroid hormone in hypoparathyroidism.
  • Deficiency of parathyroid hormone causes body to decrease:
    • Reabsorption of calcium from bone.
    • Excretion of phosphate.
    • Reabsorbtion of calcium from distal tubules.
    • Vitamin D mediated absorption of calcium from intestine.
  • This leads to hypocalcemia.
 
 
 
 
 
 
 
 
 
Hypoparathyroidism
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Deficiency of parathyroid hormone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Decrease reabsorption of calcium from bone
 
 
Decrease excretion of phosphate
 
 
 
Decrease reabsorbtion of calcium from distal tubules
 
 
Decrease vitamin D mediated absorption of calcium from intestine
 


Post-surgical Hypoparathyroidism

  • Anterior neck surgery most commonly cause hypoparathyroidism. Majority of time this hypoparathyroidism is transient i.e. it resolves within 6 months.[5][6][7]

The features of hypoparathyroidism should persist for atleast 6 month after surgery to be diagnosed as chronic hypoparathyroidism.

  • 30–60% Patients undergoing total thyroidectomy develops hypocalcaemia within 24 hours as an initial manifestation of postoperative parathyroid failure. About 60%-70% of these cases resolve within 4–6 weeks after surgery. Remaining cases progress to develop protracted hypoparathyroidism requiring continuous treatment. Around 15–25% of patients with protracted HypoPT progress to chronic hypoparathyroidism.[8]
  • Factors favorring recovery from protracted hypoparathyroidism include:
    • Number of parathyroid glands remaining in situ
    • Serum calcium level at this stage : There is high rate of recovery in individuals whose calcium levels are normal to elevated one month postoperatively.

Genetics

Genetics of Hypoparathyroidism
Hypoparathyroidism Inheritance Gene mutation Clinical features
Autoimmune Autoimmune polyglandular hypoparathyroidism Autoimmune polyendocrine syndrome type 1[9] Autosomal recessive Mutation in AIRE gene
Isolated Familial Isolated hypoparathyroidism Autosomal dominant PTH gene[10]
Glial cells missing GCM2 gene[11]
Autosomal recessive PTH gene[12]
Glial cells missing 2 (GCM2) gene[11][13]
X-linked FHL1 gene (exon 4, c.C283T, p.R95W) on chromosome locus Xq26-q27[14]
Autosomal dominant hypercalcemia[15] Autosomal dominant hypocalcemia type 1 Autosomal dominant Calcium-sensing receptor gene mutation
Autosomal dominant hypocalcemia type 2 Autosomal dominant G protein G11 (GNA11) mutation
Congenital multisystem syndromes DiGeorge syndrome[18] Autosomal dominant 22q11.2 deletion.
CHARGE syndrome[19] Autosomal dominant CHD7 G744S missense mutation
Kenny-Caffey syndrome type 1[20] Autosomal recessive Deletion of the TBCE gene
Kenny-Caffey syndrome type 2[21] Autosomal dominant Mutation of “family with sequence similarity 111, member A″ (FAM111A) gene located on chromosome locus 11q12.1
  • Patients with Kenny-Caffey sundrome type 2 have same clinical features as Kenny-Caffey syndrome type 1 except for mental retardation.
Sanjad-Sakati syndrome[22] Autosomal recessive Mutation in TBCE gene.
Barakat syndrome[23][24] Autosomal recessive Mutations in the GATA3 gene
  • Also known as hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome.
  • Presents with primary hypoparathyroidism, nerve deafness, steroid-resistant nephrosis.
Metabolic diseases Mitochondiral polyneuropathies[25] Kearns–Sayre syndrome Mitochondrial inheritence mtDNA deletion
Maternally inherited diabetes and deafness (MIDD) Mitochondrial inheritence MT‑TL1 defect
Mitochondrial enzyme deficiencies Mitochondrial trifunctional protein deficiency (MTP deficiency)[26][27] Autosomal recessive HADHA or HADHB gene mutation
Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (LCHAD deficiency)[28] Autosomal recessive G1528C gene mutation
Heavy metal storage disorders Hemochromatosis[29][30] Autosomal recessive HFE gene mutation
Wilson's disease[31][32] Autosomal recessive ATP7B gene mutation

Associated Conditions

Conditions associated with hypoparathyroidism include:[9][15][16][17][18][19][20][21][22][23][24][25][26][28][29][31]

Gross Pathology

  • There is no gross pathology findings for hypoparathyroidism.

Microscopic Pathology

    • There is no microscopic pathology findings for hypoparathyroidism.

References

  1. HARRISON MT (1964). "INTERRELATIONSHIPS OF VITAMIN D AND PARATHYROID HORMONE IN CALCIUM HOMEOSTASIS". Postgrad Med J. 40: 497–505. PMC 2482768. PMID 14184232.
  2. Nussey, Stephen (2001). Endocrinology : an integrated approach. Oxford, UK Bethesda, Md: Bios NCBI. ISBN 1-85996-252-1.
  3. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O; et al. (1993). "Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid". Nature. 366 (6455): 575–80. doi:10.1038/366575a0. PMID 8255296.
  4. Brown EM, Pollak M, Seidman CE, Seidman JG, Chou YH, Riccardi D; et al. (1995). "Calcium-ion-sensing cell-surface receptors". N Engl J Med. 333 (4): 234–40. doi:10.1056/NEJM199507273330407. PMID 7791841.
  5. Bilezikian JP, Khan A, Potts JT, Brandi ML, Clarke BL, Shoback D, Jüppner H, D'Amour P, Fox J, Rejnmark L, Mosekilde L, Rubin MR, Dempster D, Gafni R, Collins MT, Sliney J, Sanders J (2011). "Hypoparathyroidism in the adult: epidemiology, diagnosis, pathophysiology, target-organ involvement, treatment, and challenges for future research". J. Bone Miner. Res. 26 (10): 2317–37. doi:10.1002/jbmr.483. PMC 3405491. PMID 21812031.
  6. Ritter K, Elfenbein D, Schneider DF, Chen H, Sippel RS (2015). "Hypoparathyroidism after total thyroidectomy: incidence and resolution". J. Surg. Res. 197 (2): 348–53. doi:10.1016/j.jss.2015.04.059. PMC 4466142. PMID 25982044.
  7. Sturniolo G, Lo Schiavo MG, Tonante A, D'Alia C, Bonanno L (2000). "Hypocalcemia and hypoparathyroidism after total thyroidectomy: a clinical biological study and surgical considerations". Int. J. Surg. Investig. 2 (2): 99–105. PMID 12678507.
  8. Bollerslev J, Rejnmark L, Marcocci C, Shoback DM, Sitges-Serra A, van Biesen W, Dekkers OM (2015). "European Society of Endocrinology Clinical Guideline: Treatment of chronic hypoparathyroidism in adults". Eur. J. Endocrinol. 173 (2): G1–20. doi:10.1530/EJE-15-0628. PMID 26160136.
  9. 9.0 9.1 Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J (1990). "Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients". N. Engl. J. Med. 322 (26): 1829–36. doi:10.1056/NEJM199006283222601. PMID 2348835.
  10. Arnold A, Horst SA, Gardella TJ, Baba H, Levine MA, Kronenberg HM (1990). "Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism". J. Clin. Invest. 86 (4): 1084–7. doi:10.1172/JCI114811. PMC 296835. PMID 2212001.
  11. 11.0 11.1 Canaff L, Zhou X, Mosesova I, Cole DE, Hendy GN (2009). "Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism". Hum. Mutat. 30 (1): 85–92. doi:10.1002/humu.20827. PMID 18712808.
  12. Sunthornthepvarakul T, Churesigaew S, Ngowngarmratana S (1999). "A novel mutation of the signal peptide of the preproparathyroid hormone gene associated with autosomal recessive familial isolated hypoparathyroidism". J. Clin. Endocrinol. Metab. 84 (10): 3792–6. doi:10.1210/jcem.84.10.6070. PMID 10523031.
  13. Ding C, Buckingham B, Levine MA (2001). "Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB". J. Clin. Invest. 108 (8): 1215–20. doi:10.1172/JCI13180. PMC 209530. PMID 11602629.
  14. Pillar N, Pleniceanu O, Fang M, Ziv L, Lahav E, Botchan S, Cheng L, Dekel B, Shomron N (2017). "A rare variant in the FHL1 gene associated with X-linked recessive hypoparathyroidism". Hum. Genet. 136 (7): 835–845. doi:10.1007/s00439-017-1804-9. PMC 5487855. PMID 28444561.
  15. 15.0 15.1 Roszko KL, Bi RD, Mannstadt M (2016). "Autosomal Dominant Hypocalcemia (Hypoparathyroidism) Types 1 and 2". Front Physiol. 7: 458. doi:10.3389/fphys.2016.00458. PMC 5067375. PMID 27803672.
  16. 16.0 16.1 Vezzoli G, Arcidiacono T, Paloschi V, Terranegra A, Biasion R, Weber G, Mora S, Syren ML, Coviello D, Cusi D, Bianchi G, Soldati L (2006). "Autosomal dominant hypocalcemia with mild type 5 Bartter syndrome". J. Nephrol. 19 (4): 525–8. PMID 17048213.
  17. 17.0 17.1 Choi KH, Shin CH, Yang SW, Cheong HI (2015). "Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C". Korean J Pediatr. 58 (4): 148–53. doi:10.3345/kjp.2015.58.4.148. PMC 4414630. PMID 25932037.
  18. 18.0 18.1 Fomin AB, Pastorino AC, Kim CA, Pereira CA, Carneiro-Sampaio M, Abe-Jacob CM (2010). "DiGeorge Syndrome: a not so rare disease". Clinics (Sao Paulo). 65 (9): 865–9. PMC 2954737. PMID 21049214.
  19. 19.0 19.1 Jain S, Kim HG, Lacbawan F, Meliciani I, Wenzel W, Kurth I, Sharma J, Schoeneman M, Ten S, Layman LC, Jacobson-Dickman E (2011). "Unique phenotype in a patient with CHARGE syndrome". Int J Pediatr Endocrinol. 2011: 11. doi:10.1186/1687-9856-2011-11. PMC 3216247. PMID 21995344.
  20. 20.0 20.1 Metwalley KA, Farghaly HS (2012). "Kenny-Caffey syndrome type 1 in an Egyptian girl". Indian J Endocrinol Metab. 16 (5): 827–9. doi:10.4103/2230-8210.100645. PMC 3475915. PMID 23087875.
  21. 21.0 21.1 Isojima T, Doi K, Mitsui J, Oda Y, Tokuhiro E, Yasoda A, Yorifuji T, Horikawa R, Yoshimura J, Ishiura H, Morishita S, Tsuji S, Kitanaka S (2014). "A recurrent de novo FAM111A mutation causes Kenny-Caffey syndrome type 2". J. Bone Miner. Res. 29 (4): 992–8. doi:10.1002/jbmr.2091. PMID 23996431.
  22. 22.0 22.1 Rafique B, Al-Yaarubi S (2010). "Sanjad-Sakati Syndrome in Omani children". Oman Med J. 25 (3): 227–9. doi:10.5001/omj.2010.63. PMC 3191633. PMID 22043344.
  23. 23.0 23.1 Muroya K, Hasegawa T, Ito Y, Nagai T, Isotani H, Iwata Y, Yamamoto K, Fujimoto S, Seishu S, Fukushima Y, Hasegawa Y, Ogata T (2001). "GATA3 abnormalities and the phenotypic spectrum of HDR syndrome". J. Med. Genet. 38 (6): 374–80. PMC 1734904. PMID 11389161.
  24. 24.0 24.1 Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B, Beetz R, Bilous RW, Holdaway I, Shaw NJ, Fryns JP, Van de Ven W, Thakker RV, Devriendt K (2000). "GATA3 haplo-insufficiency causes human HDR syndrome". Nature. 406 (6794): 419–22. doi:10.1038/35019088. PMID 10935639.
  25. 25.0 25.1 Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S (2017). "Mitochondrial disease and endocrine dysfunction". Nat Rev Endocrinol. 13 (2): 92–104. doi:10.1038/nrendo.2016.151. PMID 27716753.
  26. 26.0 26.1 Labarthe F, Benoist JF, Brivet M, Vianey-Saban C, Despert F, de Baulny HO (2006). "Partial hypoparathyroidism associated with mitochondrial trifunctional protein deficiency". Eur. J. Pediatr. 165 (6): 389–91. doi:10.1007/s00431-005-0052-5. PMID 16523289.
  27. "mitochondrial trifunctional protein deficiency - Genetics Home Reference".
  28. 28.0 28.1 Tyni T, Rapola J, Palotie A, Pihko H (1997). "Hypoparathyroidism in a patient with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency caused by the G1528C mutation". J. Pediatr. 131 (5): 766–8. PMID 9403664.
  29. 29.0 29.1 Jeong HK, An JH, Kim HS, Cho EA, Han MG, Moon JS, Kim HK, Kang HC (2014). "Hypoparathyroidism and subclinical hypothyroidism with secondary hemochromatosis". Endocrinol Metab (Seoul). 29 (1): 91–5. doi:10.3803/EnM.2014.29.1.91. PMC 3970271. PMID 24741460.
  30. "hereditary hemochromatosis - Genetics Home Reference".
  31. 31.0 31.1 Carpenter TO, Carnes DL, Anast CS (1983). "Hypoparathyroidism in Wilson's disease". N. Engl. J. Med. 309 (15): 873–7. doi:10.1056/NEJM198310133091501. PMID 6888480.
  32. "Wilson disease - Genetics Home Reference".

Template:WH Template:WS