Parathyroid gland

Jump to navigation Jump to search

Template:Infobox Anatomy

WikiDoc Resources for Parathyroid gland

Articles

Most recent articles on Parathyroid gland

Most cited articles on Parathyroid gland

Review articles on Parathyroid gland

Articles on Parathyroid gland in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Parathyroid gland

Images of Parathyroid gland

Photos of Parathyroid gland

Podcasts & MP3s on Parathyroid gland

Videos on Parathyroid gland

Evidence Based Medicine

Cochrane Collaboration on Parathyroid gland

Bandolier on Parathyroid gland

TRIP on Parathyroid gland

Clinical Trials

Ongoing Trials on Parathyroid gland at Clinical Trials.gov

Trial results on Parathyroid gland

Clinical Trials on Parathyroid gland at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Parathyroid gland

NICE Guidance on Parathyroid gland

NHS PRODIGY Guidance

FDA on Parathyroid gland

CDC on Parathyroid gland

Books

Books on Parathyroid gland

News

Parathyroid gland in the news

Be alerted to news on Parathyroid gland

News trends on Parathyroid gland

Commentary

Blogs on Parathyroid gland

Definitions

Definitions of Parathyroid gland

Patient Resources / Community

Patient resources on Parathyroid gland

Discussion groups on Parathyroid gland

Patient Handouts on Parathyroid gland

Directions to Hospitals Treating Parathyroid gland

Risk calculators and risk factors for Parathyroid gland

Healthcare Provider Resources

Symptoms of Parathyroid gland

Causes & Risk Factors for Parathyroid gland

Diagnostic studies for Parathyroid gland

Treatment of Parathyroid gland

Continuing Medical Education (CME)

CME Programs on Parathyroid gland

International

Parathyroid gland en Espanol

Parathyroid gland en Francais

Business

Parathyroid gland in the Marketplace

Patents on Parathyroid gland

Experimental / Informatics

List of terms related to Parathyroid gland

Editor-in-Chief: Larry Gordon, M.D.


Overview

The parathyroid glands are small endocrine glands in the neck, usually located behind the thyroid gland, which produce parathyroid hormone. In rare cases the parathyroid glands are located within the thyroid glands. Most often there are four parathyroid glands, but some people have six or even eight.

Anatomy

The parathyroid glands are four or more small glands located on the posterior surface of the thyroid gland. Histologically they are quite easily recognizable from the thyroid as they have densely packed cells in contrast with the follicle structure of the thyroid. [1] However at surgery they are harder to differentiate from the thyroid or fat.

They distinguish themselves from the thyroid gland histologically as they contain two types of cells:[2]

Name Staining Quantity Size Function
parathyroid chief cells darker many[3] smaller manufacture PTH (see below).
oxyphil cells lighter few larger function unknown.[4][5]

History

  • The parathyroid glands were first discovered in the Indian Rhinoceros by Richard Owen in 1852.[6] In his description of the neck anatomy, Owen referred to the glands as "a small compact yellow glandular body attached to the thyroid at the point where the veins emerged".
  • The glands were first discovered in humans by Ivar Viktor Sandström (1852–1889), a Swedish medical student, in 1880 at Uppsala University.[7] Unaware of Owen's description, he described the glands in his monograph "On a New Gland in Man and Fellow Animals" as the "glandulae parathyroidae", noting its existence in dogs, cats, rabbits, oxen, horses and humans.[8][9] For several years, Sandström's description received little attention.[10]
  • Physiologist Eugene Gley first documented the putative function of the glands in 1891, noting the connection between their removal and the development of muscular tetani. William G. MacCallum in 1908, investigating tumours of the parathyroid, proposed their role in calcium metabolism.[9] He noted that "Tetany occurs spontaneously in many forms and may also be produced by the destruction of the parathyroid glands".[11]
  • Parathyroid hormone was isolated in 1923 by Adolph M. Hanson and 1925 by James B. Collip. Studies of parathyroid hormone levels by Roger Guillemin, Andrew Schally and Rosalyn Sussman Yalow led to the development of immunoassays capable of measuring body substances and a Nobel Prize in 1977.[12]


Physiology

The sole function of the parathyroid glands is to maintain the body's calcium level within a very narrow range, so that the nervous and muscular systems can function properly.

When blood calcium levels drop below a certain point, calcium-sensing receptors in the parathyroid gland are activated to release hormone into the blood.

Parathyroid hormone (PTH, also known as parathormone) is a small protein that takes part in the control of calcium and phosphate homeostasis, as well as bone physiology. Parathyroid hormone has effects antagonistic to those of calcitonin. It increases blood calcium levels by stimulating osteoclasts to break down bone and release calcium. It also increases gastrointestinal calcium absorption by activating vitamin D, and promotes calcium uptake by the kidneys.

Role in disease

Hyperparathyroidism and related conditions

The single major disease of parathyroid glands is overactivity of one or more of the parathyroid lobes, which make too much parathyroid hormone causing a potentially serious calcium imbalance. This is called hyperparathyroidism; it leads to hypercalcemia and osteitis fibrosa cystica. Since hyperparathyroidism was first described in 1925, the symptoms have become known as "moans, groans, stones, and bones." The primary treatment for this disease is the surgical removal of the faulty gland.

Modern high frequency ultrasound can see parathyroid masses, even before they cause high calcium. They are called parathyroid incidentalomas. If a patient has elevated calcium, the ultrasound can be used to locate the abnormal glands. The use of ultrasound guided FNA, and parathyroid hormone washings can confirm the abnormal glands. A blood calcium 15-30 minutes after the biopsy can help determine if the disease is caused by a single abnormal gland or multiple glands.

A drop in serum calcium suggests a single source, and no drop suggests multiple glands. This, with a non-localizing Sestamibi scan would point toward a neck exploration, rather than a minimally invasive method aimed a single gland disease.

A Sestamibi scan is often used to determine which parathyroid gland(s) are responsible for overproduction of parathyroid hormone.

Another related condition is called secondary hyperparathyroidism (high-per-parr-uh-THIGH-royd-izm), or secondary HPT - common in patients with chronic kidney disease on dialysis. In secondary HPT, the parathyroid glands make too much parathyroid hormone (PTH), and the kidneys do not produce enough vitamin D, and calcium and phosphorus are out of balance. Even though one may not have any symptoms, treating secondary HPT is important. Cinacalcet (Sensipar®) is a medicine that can help treat such dialysis patients and is available by prescription only.

Hypoparathyroidism and related conditions

Embryology and Evolution

The parathyroid glands originate from the interaction of neural crest mesenchyme and third and fourth pharyngeal pouch endoderm.

Genetically, Eya-1 (transcripitonal co-activator), Six-1 (a homeobox transcription factor), and Gcm-2 (a transcription factor) have been associated with the development of the parathyroid gland, and alterations in these genes alters parathyroid gland development.

The conserved homology of genes and calcium sensing receptors in fish gills with those in the parathryroid glands of birds and mammals is recognized by evolutionary developmental biology as evolution using genes and gene networks in novel ways to generate new structures with some similar functions and novel functions.

Additional images

References

  1. Histology image: 15001ooa – Histology Learning System at Boston University
  2. Histology image: 15002loa – Histology Learning System at Boston University
  3. Histology at University of Southern California end/c_28
  4. Template:OklahomaHistology
  5. Histology at University of Southern California end/c_34
  6. Cave, A.J.E. (1953). "Richard Owen and the discovery of the parathyroid glands" (PDF). In E. Ashworth Underwood. Science, Medicine and History. Essays on the Evolution of Scientific Thought and Medical Practice. 2. Oxford University Press. pp. 217–222. Retrieved 2009-07-20.
  7. Eknoyan G (November 1995). "A history of the parathyroid glands". American Journal of Kidney Disease. 26 (5): 801–7. doi:10.1016/0272-6386(95)90447-6. PMID 7485136.
  8. "On a New Gland in Man and Several Mammals (Glandulæ Parathyreoideæ)". Journal of the American Medical Association. 111 (2): 197. 9 July 1938. doi:10.1001/jama.1938.02790280087037.
  9. 9.0 9.1 DuBose, Joseph; Ragsdale, Timothy; Morvant, Jason (January 2005). ""Bodies so tiny": The history of parathyroid surgery". Current Surgery. 62 (1): 91–95. doi:10.1016/j.cursur.2004.07.012.
  10. Carney, JA (Sep 1996). "The glandulae parathyroideae of Ivar Sandström. Contributions from two continents". The American journal of surgical pathology. 20 (9): 1123–44. doi:10.1097/00000478-199609000-00010. PMID 8764749.
  11. Maccallum, W. G; Voegtlin, C. (Jan 9, 1909). "On the Relation of Tetant to the Parathyroid Glands and to Calcium Metabolism". The Journal of experimental medicine. 11 (1): 118–51. doi:10.1084/jem.11.1.118. PMC 2124703. PMID 19867238.
  12. Parathyroid gland. Wikipedia (2015). https://en.wikipedia.org/wiki/Parathyroid_gland Accessed on December 28, 2015

External links

Template:Endocrine system

ar:غدة جار درقية bn:প্যারাথাইরয়েড গ্রন্থি de:Nebenschilddrüse dv:ޕަރަތައިރޮއިޑް ގްލޭންޑް it:Paratiroide he:פאראתירואיד la:Glandulae parathyroidae lt:Prieskydinė liauka mk:Параштитна жлезда nl:Bijschildklier sk:Príštitne teliesko sl:Obščitnica fi:Lisäkilpirauhanen sv:Paratyroidea

Template:WikiDoc Sources