Sorafenib: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
(20 intermediate revisions by the same user not shown)
Line 6: Line 6:
|indicationType=treatment
|indicationType=treatment
|indication=unresectable [[hepatocellular carcinoma]], advanced [[renal cell carcinoma]], locally recurrent or metastatic, progressive, differentiated [[thyroid carcinoma]] refractory to radioactive iodine treatment
|indication=unresectable [[hepatocellular carcinoma]], advanced [[renal cell carcinoma]], locally recurrent or metastatic, progressive, differentiated [[thyroid carcinoma]] refractory to radioactive iodine treatment
|adverseReactions=[[hypertension]], [[acral erythema]], [[alopecia]], Peeling of skin, [[rash]], [[hypoalbuminemia]], [[hypocalcemia]], [[hypophosphatemia]], raised [[TSH]] level, [[weight decreased]], [[abdominal pain]], decrease in appetite, [[diarrhea]], Increased serum [[lipase]] level, Loss of appetite, [[nausea]], [[serum amylase]] raised, [[lymphocytopenia]], [[thrombocytopenia]], [[ALT]]/[[SGPT]] level raised, Infectious diseases, [[fatigue]] and [[pain]]
|adverseReactions=[[hypertension]], [[acral erythema]], [[alopecia]], peeling of skin, [[rash]], [[hypoalbuminemia]], [[hypocalcemia]], [[hypophosphatemia]], raised [[TSH]] level, [[weight decreased]], [[abdominal pain]], decrease in appetite, [[diarrhea]], Increased serum [[lipase]] level, [[anorexia]], [[nausea]], [[serum amylase]] raised, [[lymphocytopenia]], [[thrombocytopenia]], [[ALT]]/[[SGPT]] level raised, [[infections]], [[fatigue]] and [[pain]]
|blackBoxWarningTitle=<b><span style="color:#FF0000;">TITLE</span></b>
|blackBoxWarningTitle=<b><span style="color:#FF0000;">TITLE</span></b>
|blackBoxWarningBody=<i><span style="color:#FF0000;">Condition Name:</span></i> (Content)
|blackBoxWarningBody=<i><span style="color:#FF0000;">Condition Name:</span></i> (Content)
Line 37: Line 37:
*Sorafenib in combination with [[carboplatin]] and [[paclitaxel]] is contraindicated in patients with [[squamous cell lung cancer]].
*Sorafenib in combination with [[carboplatin]] and [[paclitaxel]] is contraindicated in patients with [[squamous cell lung cancer]].
|warnings======Risk of Cardiac Ischemia and/or Infarction=====
|warnings======Risk of Cardiac Ischemia and/or Infarction=====
In the HCC study, the incidence of [[cardiac ischemia]]/[[infarction]] was 2.7% in Sorafenib-treated patients compared with 1.3% in the placebo-treated group, in RCC Study 1, the incidence of [[cardiac ischemia]]/[[infarction]] was higher in the Sorafenib-treated group (2.9%) compared with the placebo-treated group (0.4%), and in the DTC study, the incidence of [[cardiac ischemia]]/[[infarction]] was 1.9% in the Sorafenib-treated group compared with 0% in the placebo-treated group. Patients with unstable coronary artery disease or recent [[myocardial infarction]] were excluded from this study. Temporary or permanent discontinuation of Sorafenib should be considered in patients who develop cardiac ischemia and/or infarction.
*In the HCC study, the incidence of [[cardiac ischemia]]/[[infarction]] was 2.7% in Sorafenib-treated patients compared with 1.3% in the placebo-treated group, in RCC Study 1, the incidence of [[cardiac ischemia]]/[[infarction]] was higher in the Sorafenib-treated group (2.9%) compared with the placebo-treated group (0.4%), and in the DTC study, the incidence of [[cardiac ischemia]]/[[infarction]] was 1.9% in the Sorafenib-treated group compared with 0% in the placebo-treated group. Patients with unstable coronary artery disease or recent [[myocardial infarction]] were excluded from this study. Temporary or permanent discontinuation of Sorafenib should be considered in patients who develop [[cardiac ischemia]] and/or [[infarction]].


=====Risk of Hemorrhage=====
=====Risk of Hemorrhage=====
An increased risk of bleeding may occur following Sorafenib administration. In the HCC study, an excess of bleeding regardless of causality was not apparent and the rate of bleeding from [[esophageal varices]] was 2.4% in Sorafenib-treated patients and 4% in placebo-treated patients. Bleeding with a fatal outcome from any site was reported in 2.4% of Sorafenib-treated patients and 4% in placebo-treated patients. In RCC Study 1, bleeding regardless of causality was reported in 15.3% of patients in the Sorafenib-treated group and 8.2% of patients in the placebo-treated group. The incidence of CTCAE Grade 3 and 4 bleeding was 2% and 0%, respectively, in Sorafenib-treated patients, and 1.3% and 0.2%, respectively, in placebo-treated patients. There was one fatal hemorrhage in each treatment group in RCC Study 1. In the DTC study, bleeding was reported in 17.4% of Sorafenib-treated patients and 9.6% of placebo-treated patients; however the incidence of CTCAE Grade 3 bleeding was 1% in Sorafenib-treated patients and 1.4% in placebo-treated patients. There was no Grade 4 bleeding reported and there was one fatal hemorrhage in a placebo-treated patient. If any bleeding necessitates medical intervention, permanent discontinuation of Sorafenib should be considered. Due to the potential risk of bleeding, tracheal, bronchial, and esophageal infiltration should be treated with local therapy prior to administering Sorafenib in patients with DTC.
*An increased risk of bleeding may occur following Sorafenib administration. In the HCC study, an excess of bleeding regardless of causality was not apparent and the rate of bleeding from [[esophageal varices]] was 2.4% in Sorafenib-treated patients and 4% in placebo-treated patients. Bleeding with a fatal outcome from any site was reported in 2.4% of Sorafenib-treated patients and 4% in placebo-treated patients. In RCC Study 1, bleeding regardless of causality was reported in 15.3% of patients in the Sorafenib-treated group and 8.2% of patients in the placebo-treated group. The incidence of CTCAE Grade 3 and 4 bleeding was 2% and 0%, respectively, in Sorafenib-treated patients, and 1.3% and 0.2%, respectively, in placebo-treated patients. There was one fatal hemorrhage in each treatment group in RCC Study 1. In the DTC study, bleeding was reported in 17.4% of Sorafenib-treated patients and 9.6% of placebo-treated patients; however the incidence of CTCAE Grade 3 bleeding was 1% in Sorafenib-treated patients and 1.4% in placebo-treated patients. There was no Grade 4 bleeding reported and there was one fatal hemorrhage in a placebo-treated patient. If any bleeding necessitates medical intervention, permanent discontinuation of Sorafenib should be considered. Due to the potential risk of bleeding, tracheal, bronchial, and esophageal infiltration should be treated with local therapy prior to administering Sorafenib in patients with DTC.


=====Risk of Hypertension=====
=====Risk of Hypertension=====
Monitor [[blood pressure]] weekly during the first 6 weeks of Sorafenib. Thereafter, monitor [[blood pressure]] and treat [[hypertension]], if required, in accordance with standard medical practice. In the HCC study, hypertension was reported in approximately 9.4% of Sorafenib-treated patients and 4.3% of patients in the placebo-treated group. In RCC Study 1, [[hypertension]] was reported in approximately 16.9% of Sorafenib-treated patients and 1.8% of patients in the placebo-treated group. In the DTC study, [[hypertension]] was reported in 40.6% of Sorafenib-treated patients and 12.4% of placebo-treated patients. [[Hypertension]] was usually mild to moderate, occurred early in the course of treatment, and was managed with standard [[antihypertensive therapy]]. In cases of severe or [[persistent hypertension]] despite institution of antihypertensive therapy, consider temporary or permanent discontinuation of Sorafenib. Permanent discontinuation due to hypertension occurred in 1 of 297 Sorafenib-treated patients in the HCC study, 1 of 451 Sorafenib-treated patients in RCC Study 1, and 1 of 207 Sorafenib-treated patients in the DTC study.
*Monitor [[blood pressure]] weekly during the first 6 weeks of Sorafenib. Thereafter, monitor [[blood pressure]] and treat [[hypertension]], if required, in accordance with standard medical practice. In the HCC study, [[hypertension]] was reported in approximately 9.4% of Sorafenib-treated patients and 4.3% of patients in the placebo-treated group. In RCC Study 1, [[hypertension]] was reported in approximately 16.9% of Sorafenib-treated patients and 1.8% of patients in the placebo-treated group. In the DTC study, [[hypertension]] was reported in 40.6% of Sorafenib-treated patients and 12.4% of placebo-treated patients. [[Hypertension]] was usually mild to moderate, occurred early in the course of treatment, and was managed with standard [[antihypertensive therapy]]. In cases of severe or [[persistent hypertension]] despite institution of antihypertensive therapy, consider temporary or permanent discontinuation of Sorafenib. Permanent discontinuation due to [[hypertension]] occurred in 1 of 297 Sorafenib-treated patients in the HCC study, 1 of 451 Sorafenib-treated patients in RCC Study 1, and 1 of 207 Sorafenib-treated patients in the DTC study.


=====Risk of Dermatologic Toxicities=====
=====Risk of Dermatologic Toxicities=====
Hand-foot [[skin reaction]] and [[rash]] represent the most common adverse reactions attributed to Sorafenib. [[Rash]] and hand-foot [[skin reaction]] are usually CTCAE Grade 1 and 2 and generally appear during the first six weeks of treatment with Sorafenib. Management of dermatologic toxicities may include topical therapies for symptomatic relief, temporary treatment interruption and/or dose modification of Sorafenib, or in severe or persistent cases, permanent discontinuation of Sorafenib. Permanent discontinuation of therapy due to hand-foot skin reaction occurred in 4 (1.3%) of 297 Sorafenib-treated patients with HCC, 3 (0.7%) of 451 Sorafenib-treated patients with RCC, and 11 (5.3%) of 207 Sorafenib-treated patients with DTC.
*Hand-foot [[skin reaction]] and [[rash]] represent the most common adverse reactions attributed to Sorafenib. [[Rash]] and hand-foot [[skin reaction]] are usually CTCAE Grade 1 and 2 and generally appear during the first six weeks of treatment with Sorafenib. Management of dermatologic toxicities may include topical therapies for symptomatic relief, temporary treatment interruption and/or dose modification of Sorafenib, or in severe or persistent cases, permanent discontinuation of Sorafenib. Permanent discontinuation of therapy due to hand-foot skin reaction occurred in 4 (1.3%) of 297 Sorafenib-treated patients with HCC, 3 (0.7%) of 451 Sorafenib-treated patients with RCC, and 11 (5.3%) of 207 Sorafenib-treated patients with DTC.
 
*There have been reports of severe dermatologic toxicities, including [[Stevens-Johnson syndrome]] ([[SJS]]) and [[toxic epidermal necrolysis]] ([[TEN]]). These cases may be life-threatening. Discontinue Sorafenib if [[SJS]] or [[TEN]] are suspected.
There have been reports of severe dermatologic toxicities, including [[Stevens-Johnson syndrome]] ([[SJS]]) and [[toxic epidermal necrolysis]] ([[TEN]]). These cases may be life-threatening. Discontinue Sorafenib if [[SJS]] or [[TEN]] are suspected.


=====Risk of Gastrointestinal Perforation=====
=====Risk of Gastrointestinal Perforation=====
[[Gastrointestinal perforation]] is an uncommon adverse reaction and has been reported in less than 1% of patients taking Sorafenib. In some cases this was not associated with apparent intra-abdominal tumor. In the event of a [[gastrointestinal perforation]], discontinue Sorafenib.
*[[Gastrointestinal perforation]] is an uncommon adverse reaction and has been reported in less than 1% of patients taking Sorafenib. In some cases this was not associated with apparent intra-abdominal tumor. In the event of a [[gastrointestinal perforation]], discontinue Sorafenib.


=====Warfarin=====
=====Warfarin=====
Infrequent bleeding or elevations in the [[International Normalized Ratio]] ([[INR]]) have been reported in some patients taking warfarin while on Sorafenib. Monitor patients taking concomitant warfarin regularly for changes in [[prothrombin time]] ([[PT]]), [[INR]] or clinical bleeding episodes.
*Infrequent bleeding or elevations in the [[International Normalized Ratio]] ([[INR]]) have been reported in some patients taking warfarin while on Sorafenib. Monitor patients taking concomitant warfarin regularly for changes in [[prothrombin time]] ([[PT]]), [[INR]] or clinical bleeding episodes.


=====Wound Healing Complications=====
=====Wound Healing Complications=====
No formal studies of the effect of Sorafenib on wound healing have been conducted. Temporary interruption of Sorafenib is recommended in patients undergoing major surgical procedures. There is limited clinical experience regarding the timing of reinitiation of Sorafenib following major surgical intervention. Therefore, the decision to resume Sorafenib following a major surgical intervention should be based on clinical judgment of adequate wound healing.
*No formal studies of the effect of Sorafenib on wound healing have been conducted. Temporary interruption of Sorafenib is recommended in patients undergoing major surgical procedures. There is limited clinical experience regarding the timing of reinitiation of Sorafenib following major surgical intervention. Therefore, the decision to resume Sorafenib following a major surgical intervention should be based on clinical judgment of adequate wound healing.


=====Increased Mortality Observed with NEXAVAR Administered in Combination with Carboplatin/Paclitaxel and Gemcitabine/Cisplatin in Squamous Cell Lung Cancer=====
=====Increased Mortality Observed with Sorafenib Administered in Combination with Carboplatin/Paclitaxel and Gemcitabine/Cisplatin in Squamous Cell Lung Cancer=====
In a subset analysis of two randomized controlled trials in chemo-naive patients with Stage IIIB-IV [[non-small cell lung cancer]], patients with [[squamous cell carcinoma]] experienced higher mortality with the addition of Sorafenib compared to those treated with [[carboplatin]]/[[paclitaxel]] alone (HR 1.81, 95% CI 1.19–2.74) and [[gemcitabine]]/[[cisplatin]] alone (HR 1.22, 95% CI 0.82-1.80). The use of Sorafenib in combination with [[carboplatin]]/[[paclitaxel]] is contraindicated in patients with [[squamous cell lung cancer]]. Sorafenib in combination with [[gemcitabine]]/[[cisplatin]] is not recommended in patients with [[squamous cell lung cancer]]. The safety and effectiveness of Sorafenib has not been established in patients with [[non-small cell lung cancer]].
*In a subset analysis of two randomized controlled trials in chemo-naive patients with Stage IIIB-IV [[non-small cell lung cancer]], patients with [[squamous cell carcinoma]] experienced higher mortality with the addition of Sorafenib compared to those treated with [[carboplatin]]/[[paclitaxel]] alone (HR 1.81, 95% CI 1.19–2.74) and [[gemcitabine]]/[[cisplatin]] alone (HR 1.22, 95% CI 0.82-1.80). The use of Sorafenib in combination with [[carboplatin]]/[[paclitaxel]] is contraindicated in patients with [[squamous cell lung cancer]]. Sorafenib in combination with [[gemcitabine]]/[[cisplatin]] is not recommended in patients with [[squamous cell lung cancer]]. The safety and effectiveness of Sorafenib has not been established in patients with [[non-small cell lung cancer]].


=====Risk of QT Interval Prolongation=====
=====Risk of QT Interval Prolongation=====
Sorafenib can prolong the [[QT]]/[[QTc interval]]. [[QT]]/[[QTc interval]] prolongation increases the risk for [[ventricular arrhythmias]]. Avoid Sorafenib in patients with congenital [[long QT syndrome]]. Monitor [[electrolytes]] and electrocardiograms in patients with [[congestive heart failure]], [[bradyarrhythmias]], drugs known to prolong the QT interval, including Class Ia and III [[antiarrhythmics]]. Correct electrolyte abnormalities ([[magnesium]], [[potassium]], [[calcium]]). Interrupt Sorafenib if [[QTc]] interval is greater than 500 milliseconds or for an increase from baseline of 60 milliseconds or greater.
*Sorafenib can prolong the [[QT]]/[[QTc interval]]. [[QT]]/[[QTc interval]] prolongation increases the risk for [[ventricular arrhythmias]]. Avoid Sorafenib in patients with congenital [[long QT syndrome]]. Monitor [[electrolytes]] and electrocardiograms in patients with [[congestive heart failure]], [[bradyarrhythmias]], drugs known to prolong the QT interval, including Class Ia and III [[antiarrhythmics]]. Correct electrolyte abnormalities ([[magnesium]], [[potassium]], [[calcium]]). Interrupt Sorafenib if [[QTc]] interval is greater than 500 milliseconds or for an increase from baseline of 60 milliseconds or greater.


=====Drug-Induced Hepatitis=====
=====Drug-Induced Hepatitis=====
Sorafenib-induced [[hepatitis]] is characterized by a hepatocellular pattern of liver damage with significant increases of [[transaminases]] which may result in [[hepatic failure]] and death. Increases in bilirubin and [[INR]] may also occur. The incidence of severe drug-induced [[liver injury]], defined as elevated [[transaminase levels]] above 20 times the upper limit of normal or transaminase elevations with significant clinical sequelae (for example, elevated [[INR]], [[ascites]], fatal, or transplantation), was two of 3,357 patients (0.06%) in a global monotherapy database. Monitor [[liver function]] tests regularly. In case of significantly increased [[transaminases]] without alternative explanation, such as [[viral hepatitis]] or progressing underlying [[malignancy]], discontinue Sorafenib.
*Sorafenib-induced [[hepatitis]] is characterized by a hepatocellular pattern of liver damage with significant increases of [[transaminases]] which may result in [[hepatic failure]] and death. Increases in bilirubin and [[INR]] may also occur. The incidence of severe drug-induced [[liver injury]], defined as elevated [[transaminase levels]] above 20 times the upper limit of normal or [[transaminase]] elevations with significant clinical sequelae (for example, elevated [[INR]], [[ascites]], fatal, or transplantation), was two of 3,357 patients (0.06%) in a global monotherapy database. Monitor [[liver function]] tests regularly. In case of significantly increased [[transaminases]] without alternative explanation, such as [[viral hepatitis]] or progressing underlying [[malignancy]], discontinue Sorafenib.


=====Embryofetal Risk=====
=====Embryofetal Risk=====
Based on its mechanism of action and findings in animals, Sorafenib may cause fetal harm when administered to a pregnant woman. Sorafenib caused embryo-fetal toxicities in animals at maternal exposures that were significantly lower than the human exposures at the recommended dose of 400 mg twice daily. Advise women of childbearing potential to avoid becoming pregnant while on Sorafenib because of the potential hazard to the fetus.  
*Based on its mechanism of action and findings in animals, Sorafenib may cause fetal harm when administered to a pregnant woman. Sorafenib caused embryo-fetal toxicities in animals at maternal exposures that were significantly lower than the human exposures at the recommended dose of 400 mg twice daily. Advise women of childbearing potential to avoid becoming pregnant while on Sorafenib because of the potential hazard to the fetus.  


=====Impairment of Thyroid Stimulating Hormone Suppression in Differentiated Thyroid Carcinoma=====
=====Impairment of Thyroid Stimulating Hormone Suppression in Differentiated Thyroid Carcinoma=====
Sorafenib impairs exogenous [[thyroid suppression]]. In the DTC study, 99% of patients had a baseline [[thyroid stimulating hormone]] ([[TSH]]) level less than 0.5 mU/L. Elevation of [[TSH]] level above 0.5 mU/L was observed in 41% of Sorafenib-treated patients as compared with 16% of placebo-treated patients. For patients with impaired [[TSH]] suppression while receiving Sorafenib, the median maximal [[TSH]] was 1.6 mU/L and 25% had [[TSH]] levels greater than 4.4 mU/L. Monitor TSH levels monthly and adjust thyroid replacement medication as needed in patients with DTC
*Sorafenib impairs exogenous [[thyroid suppression]]. In the DTC study, 99% of patients had a baseline [[thyroid stimulating hormone]] ([[TSH]]) level less than 0.5 mU/L. Elevation of [[TSH]] level above 0.5 mU/L was observed in 41% of Sorafenib-treated patients as compared with 16% of placebo-treated patients. For patients with impaired [[TSH]] suppression while receiving Sorafenib, the median maximal [[TSH]] was 1.6 mU/L and 25% had [[TSH]] levels greater than 4.4 mU/L. Monitor [[TSH]] levels monthly and adjust thyroid replacement medication as needed in patients with DTC.
|clinicalTrials======Adverse Reactions in HCC Study=====
|clinicalTrials=====Adverse Reactions in HCC Study====
Adverse Reactions Reported in at Least 10% of Patients and at a Higher Rate in Sorafenib Arm than the Placebo Arm – HCC Study:
<i>Adverse Reactions Reported in at Least 10% of Patients and at a Higher Rate in Sorafenib Arm than the Placebo Arm – HCC Study:</i>
 
======Constitutional symptoms======
======Constitutional symptoms======
*[[Fatigue]]
*[[Fatigue]]
Line 96: Line 96:
[[Hypertension]] was reported in 9% of patients treated with Sorafenib and 4% of those treated with placebo. CTCAE Grade 3 hypertension was reported in 4% of Sorafenib-treated patients and 1% of placebo-treated patients. No patients were reported with CTCAE Grade 4 reactions in either treatment group. Hemorrhage/bleeding was reported in 18% of those receiving Sorafenib and 20% of placebo-treated patients. The rates of CTCAE Grade 3 and 4 bleeding were also higher in the placebo-treated group (CTCAE Grade 3 – 3% Sorafenib and 5% placebo and CTCAE Grade 4 – 2% Sorafenib and 4% placebo). Bleeding from [[esophageal varices]] was reported in 2.4% in Sorafenib-treated patients and 4% of placebo-treated patients. [[Renal failure]] was reported in <1% of patients treated with Sorafenib and 3% of placebo-treated patients. The rate of adverse reactions (including those associated with progressive disease) resulting in permanent discontinuation was similar in both the Sorafenib and placebo-treated groups (32% of Sorafenib-treated patients and 35% of placebo-treated patients).
[[Hypertension]] was reported in 9% of patients treated with Sorafenib and 4% of those treated with placebo. CTCAE Grade 3 hypertension was reported in 4% of Sorafenib-treated patients and 1% of placebo-treated patients. No patients were reported with CTCAE Grade 4 reactions in either treatment group. Hemorrhage/bleeding was reported in 18% of those receiving Sorafenib and 20% of placebo-treated patients. The rates of CTCAE Grade 3 and 4 bleeding were also higher in the placebo-treated group (CTCAE Grade 3 – 3% Sorafenib and 5% placebo and CTCAE Grade 4 – 2% Sorafenib and 4% placebo). Bleeding from [[esophageal varices]] was reported in 2.4% in Sorafenib-treated patients and 4% of placebo-treated patients. [[Renal failure]] was reported in <1% of patients treated with Sorafenib and 3% of placebo-treated patients. The rate of adverse reactions (including those associated with progressive disease) resulting in permanent discontinuation was similar in both the Sorafenib and placebo-treated groups (32% of Sorafenib-treated patients and 35% of placebo-treated patients).


======laboratory Abnormalities======
======Laboratory Abnormalities======
The following laboratory abnormalities were observed in patients with HCC:
The following laboratory abnormalities were observed in patients with HCC:
*[[Hypophosphatemia]] was a common laboratory finding, observed in 35% of Sorafenib-treated patients compared to 11% of placebo-treated patients; CTCAE Grade 3 hypophosphatemia (1–2 mg/dL) occurred in 11% of Sorafenib-treated patients and 2% of patients in the placebo-treated group; there was 1 case of CTCAE Grade 4 hypophosphatemia (<1 mg/dL) reported in the placebo-treated group. The etiology of hypophosphatemia associated with Sorafenib is not known.
*[[Hypophosphatemia]] was a common laboratory finding, observed in 35% of Sorafenib-treated patients compared to 11% of placebo-treated patients; CTCAE Grade 3 hypophosphatemia (1–2 mg/dL) occurred in 11% of Sorafenib-treated patients and 2% of patients in the placebo-treated group; there was 1 case of CTCAE Grade 4 hypophosphatemia (<1 mg/dL) reported in the placebo-treated group. The etiology of hypophosphatemia associated with Sorafenib is not known.
Line 107: Line 107:
*[[Hypokalemia]] was reported in 9.5% of Sorafenib- treated patients compared to 5.9% of placebo-treated patients. Most reports of [[hypokalemia]] were low grade (CTCAE Grade 1). CTCAE Grade 3 [[hypokalemia]] occurred in 0.4% of Sorafenib-treated patients and 0.7% of placebo-treated patients. There were no reports of Grade 4 hypokalemia.
*[[Hypokalemia]] was reported in 9.5% of Sorafenib- treated patients compared to 5.9% of placebo-treated patients. Most reports of [[hypokalemia]] were low grade (CTCAE Grade 1). CTCAE Grade 3 [[hypokalemia]] occurred in 0.4% of Sorafenib-treated patients and 0.7% of placebo-treated patients. There were no reports of Grade 4 hypokalemia.


=====Adverse Reactions in RCC Study 1=====
====Adverse Reactions in RCC Study 1====
Adverse Reactions Reported in at Least 10% of Patients and at a Higher Rate in Sorafenib Arm than the Placebo Arm – RCC Study 1:
Adverse Reactions Reported in at Least 10% of Patients and at a Higher Rate in Sorafenib Arm than the Placebo Arm – RCC Study 1:
======Cardiovascular Effects======
======Cardiovascular Effects======
*[[Hypertension]]  
*[[Hypertension]]  
======Constitutional Symptoms======
======Constitutional Symptoms======
*[[Fatigue]]  
*[[Fatigue]]  
*[[Weight loss]]  
*[[Weight loss]]  
======Dermatologic Effects======
======Dermatologic Effects======
*[[Rash]]/[[Desquamation]]  
*[[Rash]]/[[Desquamation]]  
Line 122: Line 120:
*[[Pruritus]]  
*[[Pruritus]]  
*[[Dry skin]]  
*[[Dry skin]]  
======Gastrointestinal Effects======
======Gastrointestinal Effects======
*[[Diarrhea]]  
*[[Diarrhea]]  
Line 129: Line 126:
*[[Vomiting]]  
*[[Vomiting]]  
*[[Constipation]]  
*[[Constipation]]  
======Hemorragic Effects======
======Hemorragic Effects======
*[[Hemorrhage]] - All sites  
*[[Hemorrhage]] - All sites  
======Neurological Effects======
======Neurological Effects======
*[[Sensory neuropathy]]
*[[Sensory neuropathy]]
======Pain======
======Pain======
*[[Abdominal Pain]]
*[[Abdominal Pain]]
*[[Joint Pain]]
*[[Joint Pain]]
*[[Headache]]  
*[[Headache]]  
======Respiratory Effects======
======Respiratory Effects======
*[[Dyspnea]]
*[[Dyspnea]]
======Laboratory Findings======
The following laboratory abnormalities were observed in patients with RCC in Study 1:
*[[Hypophosphatemia]] was a common laboratory finding, observed in 45% of Sorafenib-treated patients compared to 11% of placebo-treated patients. CTCAE Grade 3 [[hypophosphatemia]] (1–2 mg/dL) occurred in 13% of Sorafenib-treated patients and 3% of patients in the placebo-treated group. There were no cases of CTCAE Grade 4 [[hypophosphatemia]] (<1 mg/dL) reported in either Sorafenib or placebo-treated patients. The etiology of [[hypophosphatemia]] associated with Sorafenib is not known.
*Elevated [[lipase]] was observed in 41% of patients treated with Sorafenib compared to 30% of patients in the placebo-treated group. CTCAE Grade 3 or 4 [[lipase]] elevations occurred in 12% of patients in the Sorafenib-treated group compared to 7% of patients in the placebo-treated group. Elevated [[amylase]] was observed in 30% of patients treated with Sorafenib compared to 23% of patients in the placebo-treated group. CTCAE Grade 3 or 4 [[amylase]] elevations were reported in 1% of patients in the Sorafenib-treated group compared to 3% of patients in the placebo-treated group. Many of the Sorafenib and [[amylase]] elevations were transient, and in the majority of cases Sorafenib treatment was not interrupted. Clinical pancreatitis was reported in 3 of 451 Sorafenib-treated patients (one CTCAE Grade 2 and two Grade 4) and 1 of 451 patients (CTCAE Grade 2) in the placebo-treated group.
*[[Lymphopenia]] was observed in 23% of Sorafenib-treated patients and 13% of placebo-treated patients. CTCAE Grade 3 or 4 [[lymphopenia]] was reported in 13% of Sorafenib-treated patients and 7% of placebo-treated patients. [[Neutropenia]] was observed in 18% of Sorafenib-treated patients and 10% of placebo-treated patients. CTCAE Grade 3 or 4 neutropenia was reported in 5% of Sorafenib-treated patients and 2% of placebo-treated patients.
*[[Anemia]] was observed in 44% of Sorafenib-treated patients and 49% of placebo-treated patients. CTCAE Grade 3 or 4 [[anemia]] was reported in 2% of Sorafenib-treated patients and 4% of placebo-treated patients.
*[[Thrombocytopenia]] was observed in 12% of Sorafenib-treated patients and 5% of placebo-treated patients. CTCAE Grade 3 or 4 [[thrombocytopenia]] was reported in 1% of Sorafenib-treated patients and in no placebo-treated patients.
*[[Hypocalcemia]] was reported in 12% of Sorafenib-treated patients and 8% of placebo-treated patients. CTCAE Grade 3 [[hypocalcemia]] (6–7 mg/dL) occurred in 1% of Sorafenib-treated patients and 0.2% of placebo-treated patients, and CTCAE Grade 4 [[hypocalcemia]] (<6 mg/dL) occurred in 1% of Sorafenib-treated patients and 0.5% of placebo-treated patients.
*[[Hypokalemia]] was reported in 5.4% of Sorafenib-treated patients compared to 0.7% of placebo-treated patients. Most reports of [[hypokalemia]] were low grade (CTCAE Grade 1). CTCAE Grade 3 [[hypokalemia]] occurred in 1.1% of Sorafenib-treated patients and 0.2% of placebo-treated patients. There were no reports of Grade 4 [[hypokalemia]].


====Adverse Reactions in DTC Study====
Per-Patient Incidence of Selected Adverse Reactions Occurring at a Higher Incidence in Sorafenib-Treated Patients [Between Arm Difference of ≥ 5% (All Grades)1 or ≥ 2% (Grades 3 and 4)]:
=====Gastrointestinal Effects=====
*[[Diarrhea]]
*[[Nausea]]
*[[Abdominal pain]]
*[[Constipation]]
*[[Stomatitis]]
*[[Vomiting]]
*[[Oral pain]]
======General Disorders and Administration Site Conditions======
*[[Fatigue]]
*[[Asthenia]]
*[[Pyrexia]]
======Investigations======
*[[Weight loss]]
====== Metabolism and Nutrition Disorders======
*[[Decreased appetite]]
======Musculoskeletal and connective tissue disorders======
*[[Pain in extremities]]
*[[Muscle spasms]]
======Neoplasms benign, malignant and unspecified======
*[[Squamous cell carcinoma of skin]]
======Central Nervous System Effects======
*[[Headache]]
*[[Dysgeusia]]
======Respiratory, thoracic and mediastinal disorders======
*[[Epistaxis]]
*[[Dysphonia]]&nbsp;
====== Skin and Subcutaneous Tissue Disorders======
*[[PPES]]
*[[Alopecia]]
*[[Rash]]
*[[Pruritus]]
*[[Dry skin]]
*[[Erythema]]
*[[Hyperkeratosis]]
=====Vascular Disorders=====
*[[Hypertension]]
======Laboratory Findings======
*Elevated [[TSH]] levels are discussed elsewhere in the labeling. The relative increase for the following laboratory abnormalities observed in Sorafenib-treated DTC patients as compared to placebo-treated patients is similar to that observed in the RCC and HCC studies: [[lipase]], [[amylase]], [[hypokalemia]], [[hypophosphatemia]], [[neutropenia]], [[lymphopenia]], [[anemia]], and [[thrombocytopenia]].
*Serum [[ALT]] and [[AST]] elevations were observed in 59% and 54% of the Sorafenib-treated patients as compared to 24% and 15% of placebo-treated patients, respectively. High grade (≥ 3) [[ALT]] and [[AST]] elevations were observed in 4% and 2%, respectively, in the [[Sorafenib]]-treated patients as compared to none of the placebo-treated patients.
*[[Hypocalcemia]] was more frequent and more severe in patients with DTC, especially those with a history of hypoparathyroidism, compared to patients with RCC or HCC. [[Hypocalcemia]] was observed in 36% of DTC patients receiving Sorafenib (with 10% ≥ Grade 3) as compared with 11% of placebo-treated patients (3% ≥ Grade 3). In the DTC study, serum calcium levels were monitored monthly.


====Additional Data from Multiple Clinical Trials====
The following additional drug-related adverse reactions and laboratory abnormalities were reported from clinical trials of Sorafenib (very common 10% or greater, common 1 to less than 10%, uncommon 0.1% to less than 1%, rare less than 0.1 %):
*Cardiovascular
**Common: [[congestive heart failure]], [[myocardial ischemia]] and/or [[infarction]]
**Uncommon: [[hypertensive crisis]]
**Rare: [[QT prolongation]]
*Dermatologic
**Very common: [[erythema]]
**Common: [[exfoliative dermatitis]], [[acne]], [[flushing]], [[folliculitis]], [[hyperkeratosis]]
**Uncommon: [[eczema]], [[erythema]] and [[multiform]].
*Digestive
**Very common: increased [[lipase]], increased [[amylase]]
**Common: [[mucositis]], [[stomatitis]] (including [[dry mouth]] and [[glossodynia]]), [[dyspepsia]], [[dysphagia]], [[gastrointestinal reflux]]
**Uncommon: [[pancreatitis]], [[gastritis]], [[gastrointestinal perforations]], [[cholecystitis]], [[cholangitis]]
***Note that elevations in lipase are very common (41%, see below); a diagnosis of pancreatitis should not be made solely on the basis of abnormal laboratory values
*General Disorders
**Very common: [[infection]], [[hemorrhage]] (including gastrointestinal and respiratory tract and uncommon cases of cerebral hemorrhage), [[asthenia]], [[pain]] (including mouth, bone, and tumor pain), [[pyrexia]], decreased appetite
**Common: [[influenza-like illness]].
*Hematologic
**Very common: [[leukopenia]], [[lymphopenia]]
**Common: [[anemia]], [[neutropenia]], [[thrombocytopenia]]
**Uncommon: [[INR abnormal]]
*Hepatobiliary disorders:
Rare: drug-induced [[hepatitis]] (including [[hepatic failure]] and death)
*Hypersensitivity
**Uncommon: [[hypersensitivity reactions]] (including [[skin reactions]] and [[urticaria]]), [[anaphylactic reaction]]
*Metabolic and Nutritional
**Very common: [[hypophosphatemia]]
**Common: transient increases in [[transaminases]], [[hypocalcemia]], [[hypokalemia]], [[hyponatremia]], [[hypothyroidism]]
**Uncommon: [[dehydration]], transient increases in [[alkaline phosphatase]], increased [[bilirubin]] (including [[jaundice]]), [[hyperthyroidism]]
*Musculoskeletal
**Very common: [[arthralgia]]
**Common: [[myalgia]], [[muscle spasms]]
*Nervous System and Psychiatric
**Common: [[depression]], [[dysgeusia]]
**Uncommon: [[tinnitus]], reversible posterior [[leukoencephalopathy]]
*Renal and Genitourinary
**Common: [[renal failure]], [[proteinuria]]
**Rare: [[nephrotic syndrome]]
*Reproductive
**Common: [[erectile dysfunction]]
**Uncommon: [[gynecomastia]]
*Respiratory
**Common: [[rhinorrhea]]
**Uncommon: [[interstitial lung disease-like]] events (includes reports of [[pneumonitis]], [[radiation pneumonitis]], [[acute respiratory distress]], [[interstitial pneumonia]], [[pulmonitis]] and [[lung inflammation]])


In addition, the following medically significant adverse reactions were uncommon during clinical trials of Sorafenib: [[transient ischemic attack]], [[arrhythmia]], and [[thromboembolism]]. For these adverse reactions, the causal relationship of Sorafenib has not been established.
|postmarketing=<i>The following adverse drug reactions have been identified during post-approval use of Sorafenib. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. </i>
*Dermatologic: [[Stevens-Johnson syndrome]] and [[toxic epidermal necrolysis]] ([[TEN]])
*Hypersensitivity: [[Angioedema]]
*Musculoskeletal: [[Rhabdomyolysis]], [[osteonecrosis]] of the jaw
*Respiratory: [[Interstitial lung disease]]-like events (which may have a life-threatening or fatal outcome)
|drugInteractions======Effect of Strong CYP3A4 Inducers on Sorafenib=====
*[[Rifampin]], a strong [[CYP3A4]] inducer, administered at a dose of 600 mg once daily for 5 days with a single oral dose of Sorafenib 400 mg in healthy volunteers resulted in a 37% decrease in the mean AUC of sorafenib. Avoid concomitant use of strong [[CYP3A4]] inducers (such as, [[carbamazepine]], [[dexamethasone]], [[phenobarbital]], [[phenytoin]], [[rifampin]], [[rifabutin]], [[St. John’s wort]]), when possible, because these drugs can decrease the systemic exposure to sorafenib.


=====Effect of Strong CYP3A4 Inhibitors on Sorafenib=====
*[[Ketoconazole]], a strong inhibitor of [[CYP3A4]] and [[P-glycoprotein]], administered at a dose of 400 mg once daily for 7 days did not alter the mean AUC of a single oral dose of Sorafenib 50 mg in healthy volunteers.


=====Effect of Sorafenib on Other Drugs=====
*Sorafenib 400 mg twice daily for 28 days did not increase the systemic exposure of concomitantly administered [[midazolam]] ([[CYP3A4]] substrate), [[dextromethorphan]] ([[CYP2D6]] substrate), and [[omeprazole]] ([[CYP2C19]] substrate)


=====Neomycin=====
*[[Neomycin]] administered as an oral dose of 1 g three times daily for 5 days decreased the mean AUC of sorafenib by 54% in healthy volunteers administered a single oral dose of Sorafenib 400 mg. The effects of other antibiotics on the pharmacokinetics of sorafenib have not been studied.


 
=====Drugs that Increase Gastric pH=====
 
*The aqueous solubility of sorafenib is [[pH]] dependent, with higher pH resulting in lower solubility. However, [[omeprazole]], a [[proton pump inhibitor]], administered at a dose of 40 mg once daily for 5 days, did not result in a clinically meaningful change in sorafenib single dose exposure. No dose adjustment for Sorafenib is necessary.
 
|FDAPregCat=D
|postmarketing=The following adverse drug reactions have been identified during post-approval use of Sorafenib. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.  
|useInPregnancyFDA=*Based on its mechanism of action and findings in animals, Sorafenib may cause fetal harm when administered to a pregnant woman. Sorafenib caused embryo-fetal toxicities in animals at maternal exposures that were significantly lower than the human exposures at the recommended dose of 400 mg twice daily. There are no adequate and well-controlled studies in pregnant women using Sorafenib  Inform patients of childbearing potential that Sorafenib can cause birth defects or fetal loss. Instruct both men and women of childbearing potential to use effective birth control during treatment with Sorafenib and for at least 2 weeks after stopping treatment. Counsel female patients to contact their healthcare provider if they become pregnant while taking Sorafenib.
*Dermatologic: [[Stevens-Johnson syndrome]] and [[toxic epidermal necrolysis]] ([[TEN]])
*When administered to rats and rabbits during the period of organogenesis, sorafenib was teratogenic and induced embryo-fetal toxicity (including increased post-implantation loss, resorptions, skeletal retardations, and retarded fetal weight). The effects occurred at doses considerably below the recommended human dose of 400 mg twice daily (approximately 500 mg/m2/day on a body surface area basis). Adverse intrauterine development effects were seen at doses ≥0.2 mg/kg/day (1.2 mg/m2/day) in rats and 0.3 mg/kg/day (3.6 mg/m2/day) in rabbits. These doses result in exposures (AUC) approximately 0.008 times the AUC seen in patients at the recommended human dose. A NOAEL (no observed adverse effect level) was not defined for either species, since lower doses were not tested.
*Hypersensitivity: [[Angioedema]]
|useInNursing=*It is not known whether sorafenib is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from Sorafenib, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.
*Musculoskeletal: [[Rhabdomyolysis]], [[osteonecrosis]] of the jaw
*Following administration of radiolabeled sorafenib to lactating Wistar rats, approximately 27% of the radioactivity was secreted into the milk. The milk to plasma AUC ratio was approximately 5:1.
*Respiratory: [[Interstitial lung disease]]-like events (which may have a life-threatening or fatal outcome)
|useInPed='''The safety and effectiveness of Sorafenib in pediatric patients have not been studied.'''
|alcohol=Alcohol-Sorafenib interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
*Repeat dosing of sorafenib to young and growing dogs resulted in irregular thickening of the femoral growth plate at daily sorafenib doses ≥ 600 mg/m2 (approximately 0.3 times the AUC at the recommended human dose), hypocellularity of the bone marrow adjoining the growth plate at 200 mg/m2/day (approximately 0.1 times the AUC at the recommended human dose), and alterations of the dentin composition at 600 mg/m2/day. Similar effects were not observed in adult dogs when dosed for 4 weeks or less.
}}
|useInGeri=*In total, 59% of HCC patients treated with Sorafenib were age 65 years or older, and 19% were 75 and older. In total, 32% of RCC patients treated with Sorafenib were age 65 years or older, and 4% were 75 and older. No differences in safety or efficacy were observed between older and younger patients, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.
{{drugbox
|useInRenalImpair=*No correlation between sorafenib exposure and renal function was observed following administration of a single oral dose of Sorafenib 400 mg to subjects with normal renal function and subjects with mild (CLcr 50–80 mL/min), moderate (CLcr 30–<50 mL/min), or severe (CLcr <30 mL/min) renal impairment who are not on dialysis. No dose adjustment is necessary for patients with mild, moderate or severe renal impairment who are not on dialysis. The pharmacokinetics of sorafenib have not been studied in patients who are on dialysis
|useInHepaticImpair=*In a trial of HCC patients with mild (Child-Pugh A) or moderate (Child-Pugh B) hepatic impairment, the systemic exposure (AUC) of sorafenib was within the range observed in patients without hepatic impairment. In another trial in subjects without HCC, the mean AUC was similar for subjects with mild (n=15) and moderate (n=14) hepatic impairment compared to subjects (n=15) with normal hepatic function. No dose adjustment is necessary for patients with mild or moderate hepatic impairment. The pharmacokinetics of sorafenib have not been studied in patients with severe (Child-Pugh C) hepatic impairment
|administration=*Oral (tablets)
|overdose=*There is no specific treatment for Sorafenib overdose. The highest dose of Sorafenib studied clinically is 800 mg twice daily. The adverse reactions observed at this dose were primarily diarrhea and dermatologic. No information is available on symptoms of acute overdose in animals because of the saturation of absorption in oral acute toxicity studies conducted in animals. In cases of suspected overdose, Sorafenib should be withheld and supportive care instituted.
|drugBox={{drugbox2
| IUPAC_name = 4-[4-<nowiki>[[</nowiki>4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]<br>phenoxy]-''N''-methyl-pyridine-2-carboxamide
| IUPAC_name = 4-[4-<nowiki>[[</nowiki>4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]<br>phenoxy]-''N''-methyl-pyridine-2-carboxamide
| image =
| image =
Line 170: Line 278:
| PubChem = 216239
| PubChem = 216239
| DrugBank = APRD01304
| DrugBank = APRD01304
| synonyms = Nexavar<br>Sorafenib tosylate
| synonyms = Sorafenib<br>Sorafenib tosylate
| smiles = CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F
| smiles = CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F
| C = 21 | H = 16 | Cl = 1 | F = 3 | N = 4 | O = 3
| C = 21 | H = 16 | Cl = 1 | F = 3 | N = 4 | O = 3
Line 179: Line 287:
| elimination_half-life = 25–48 hours
| elimination_half-life = 25–48 hours
| excretion = Fecal (77%) and [[Kidney|renal]] (19%)
| excretion = Fecal (77%) and [[Kidney|renal]] (19%)
| licence_EU = Nexavar
| licence_EU = Sorafenib
| licence_US = Sorafenib
| licence_US = Sorafenib
| pregnancy_AU = D
| pregnancy_AU = D
Line 190: Line 298:
| routes_of_administration = Oral
| routes_of_administration = Oral
}}
}}
{{SI}}
|mechAction=*Sorafenib is a [[kinase inhibitor]] that decreases tumor cell proliferation in vitro. Sorafenib was shown to inhibit multiple intracellular (c-CRAF, BRAF and mutant BRAF) and cell surface kinases (KIT, FLT- 3, RET, RET/PTC, VEGFR-1, VEGFR- 2, VEGFR- 3, and PDGFR-ß). Several of these kinases are thought to be involved in tumor cell signaling, angiogenesis and apoptosis. Sorafenib inhibited tumor growth of HCC, RCC, and DTC human tumor xenografts in immunocompromised mice. Reductions in tumor angiogenesis were seen in models of HCC and RCC upon sorafenib treatment, and increases in tumor apoptosis were observed in models of HCC, RCC, and DTC.
|structure=*Sorafenib tosylate has the chemical name 4-(4-{3-[4-Chloro-3-(trifluoromethyl)phenyl]ureido}phenoxy)N2-methylpyridine-2-carboxamide 4-methylbenzenesulfonate and its structural formula is:
[[file:Sorafenib Structure.png|thumb|none|300px]]
|PD=*The effect of Sorafenib 400 mg twice daily on the QTc interval was evaluated in a multi-center, open-label, non-randomized trial in 53 patients with advanced cancer. No large changes in the mean QTc intervals (that is, >20 ms) from baseline were detected in the trial. After one 28-day treatment cycle, the largest mean QTc interval change of 8.5 ms (upper bound of two-sided 90% confidence interval, 13.3 ms) was observed at 6 hours post-dose on day 1 of cycle 2
|PK=*The mean elimination half-life of sorafenib was approximately 25 to 48 hours. Multiple doses of Sorafenib for 7 days resulted in a 2.5- to 7-fold accumulation compared to a single dose. Steady-state plasma sorafenib concentrations were achieved within 7 days, with a peak-to-trough ratio of mean concentrations of less than 2. The steady-state concentrations of sorafenib following administration of 400 mg Sorafenib twice daily were evaluated in DTC, RCC and HCC patients. Patients with DTC have mean steady-state concentrations that are 1.8-fold higher than patients with HCC and 2.3-fold higher than those with RCC. The reason for increased sorafenib concentrations in DTC patients is unknown.


=====Absorption and Distribution=====
*After administration of Sorafenib tablets, the mean relative bioavailability was 38–49% when compared to an oral solution. Following oral administration, sorafenib reached peak plasma levels in approximately 3 hours. With a moderate-fat meal (30% fat; 700 calories), bioavailability was similar to that in the fasted state. With a high-fat meal (50% fat; 900 calories), bioavailability was reduced by 29% compared to that in the fasted state. It is recommended that Sorafenib be administered without food. Mean Cmax and AUC increased less than proportionally beyond oral doses of 400 mg administered twice daily. In vitro binding of sorafenib to human plasma proteins was 99.5%.


==Overview==
=====Metabolism and Elimination=====
'''Sorafenib''' ([[International Nonproprietary Name|rINN]]), marketed as '''Nexavar''' by [[Bayer]], is a drug approved for the treatment of advanced [[renal cell carcinoma]] (primary kidney cancer). It has also received "Fast Track" designation by the FDA<ref name=FDAFastTrackHCC>https://lnn605.aus.us.siteprotect.com/medicalnews.php?newsid=45119</ref> for the treatment of advanced [[hepatocellular carcinoma]] (primary liver cancer), and has since performed well in Phase III trials<ref name=PhaseIIIHCC>http://www.healthtech.com/news/top_news/2007/June/Nexavar_Extends_Survival.asp</ref>.  
*Sorafenib undergoes oxidative metabolism by hepatic [[CYP3A4]], as well as glucuronidation by UGT1A9. Inducers of [[CYP3A4]] activity can decrease the systemic exposure of sorafenib. Sorafenib accounted for approximately 70–85% of the circulating analytes in plasma at steady-state. Eight metabolites of sorafenib have been identified, of which 5 have been detected in plasma. The main circulating metabolite of sorafenib, the pyridine N-oxide that comprises approximately 9–16% of circulating analytes at steady-state, showed in vitro potency similar to that of sorafenib. Following oral administration of a 100 mg dose of a solution formulation of sorafenib, 96% of the dose was recovered within 14 days, with 77% of the dose excreted in feces and 19% of the dose excreted in urine as glucuronidated metabolites. Unchanged sorafenib, accounting for 51% of the dose, was found in feces but not in urine.


==Pharmacology==
=====Effects of Age, Gender and Race=====
It is a small molecular [[enzyme inhibitor|inhibitor]] of [[c-Raf|Raf]] kinase, PDGF ([[platelet-derived growth factor]]), [[Vascular endothelial growth factor|VEGF]] receptor 2 & 3 kinases and c Kit the receptor for [[Stem cell factor]]. A growing number of drugs target most of these pathways. The originality of Sorafenib lays in its simultaneous targeting of the Raf/Mek/Erk pathway.<ref>{{cite web |url=http://www.healthvalue.net/SorafenibSunitinibdifferences.html |title=SorafenibSunitinibdifferences |accessdate=2007-08-15 |format= |work=}}</ref>
*A study of the pharmacokinetics of sorafenib indicated that the mean AUC of sorafenib in Asians (N=78) was 30% lower than in Caucasians (N=40). Gender and age do not have a clinically meaningful effect on the pharmacokinetics of sorafenib.


==Approval==
=====Renal Impairment=====  
Sorafenib was approved by the U.S. [[Food and Drug Administration]] (FDA) on December 20, 2005 and received a E.U. marketing authorisation on July 19, 2006<ref name=EUapproval>European Commission - Enterprise and industry. [http://ec.europa.eu/enterprise/pharmaceuticals/register/h342.htm Nexavar]. Retrieved April 24,2007.</ref>.
*Mild (CLcr 50-80 mL/min), moderate (CLcr 30 - <50 mL/min), and severe (CLcr <30 mL/min) [[renal impairment]] do not affect the pharmacokinetics of sorafenib. No dose adjustment is necessary.  


The European Commission has granted marketing authorization to Nexavar® (sorafenib) tablets for the treatment of patients with hepatocellular carcinoma (HCC), the most common form of liver cancer, on October 30, 2007. <ref name=Euapproval>DGnews [http://www.pslgroup.com/news/content.nsf/medicalnews/852571020057CCF685257384005A45B1?OpenDocument&id=&count=10]. Retrieved [[November 02]], [[2007]].</ref>.
=====Hepatic Impairment=====
*Mild ([[Child-Pugh]] A) and moderate ([[Child-Pugh]] B) hepatic impairment do not affect the pharmacokinetics of sorafenib. No dose adjustment is necessary.  


==Studies==
=====Drug-Drug Interactions=====  
A New England Journal of Medicine article published in January 2007 showed compared with placebo, treatment with sorafenib prolongs progression-free survival in patients with advanced clear-cell renal-cell carcinoma in whom previous therapy has failed; the median progression-free survival was 5.5 months in the sorafenib group and 2.8 months in the placebo group ([[hazard ratio]] for disease progression in the sorafenib group, 0.44; 95% confidence interval [CI], 0.35 to 0.55; P<0.01). The first interim analysis of overall survival in May 2005 showed that sorafenib reduced the risk of death, as compared with placebo ([[hazard ratio]], 0.72; 95% CI, 0.54 to 0.94; P=0.02), although this benefit was not statistically significant according to the O'Brien–Fleming threshold. Partial responses were reported as the best response in 10% of patients receiving sorafenib and in 2% of those receiving placebo (P<0.001).  
Studies in human liver microsomes demonstrated that sorafenib competitively inhibited [[CYP2B6]], [[CYP2C8]], [[CYP2C9]], [[CYP2C19]], [[CYP2D6]], and [[CYP3A4]]. However, Sorafenib 400 mg twice daily for 28 days with substrates of [[CYP3A4]], [[CYP2D6]] and [[CYP2C19]] did not increase the systemic exposure of these substrates. Studies with cultured human [[hepatocytes]] demonstrated that sorafenib did not increase [[CYP1A2]] and [[CYP3A4]] activities, suggesting that sorafenib is unlikely to induce [[CYP1A2]] or [[CYP3A4]] in humans. Sorafenib inhibits [[glucuronidation]] by UGT1A1 and UGT1A9 in vitro. Sorafenib could increase the systemic exposure of concomitantly administered drugs that are UGT1A1 or UGT1A9 substrates. Sorafenib inhibited [[P-glycoprotein]] in vitro. Sorafenib could increase the concentrations of concomitantly administered drugs that are [[P-glycoprotein]] substrates.
|nonClinToxic======Carcinogenesis, Mutagenesis, Impairment of Fertility=====
*Carcinogenicity studies have not been performed with sorafenib. Sorafenib was clastogenic when tested in an in vitro mammalian cell assay (Chinese hamster ovary) in the presence of metabolic activation. Sorafenib was not mutagenic in the in vitro Ames bacterial cell assay or clastogenic in an in vivo mouse micronucleus assay. One intermediate in the manufacturing process, which is also present in the final drug substance (<0.15%), was positive for mutagenesis in an in vitro bacterial cell assay (Ames test) when tested independently.
*No specific studies with sorafenib have been conducted in animals to evaluate the effect on fertility. However, results from the repeat-dose toxicity studies suggest there is a potential for sorafenib to impair reproductive function and fertility. Multiple adverse effects were observed in male and female reproductive organs, with the rat being more susceptible than mice or dogs. Typical changes in rats consisted of testicular atrophy or degeneration, degeneration of epididymis, prostate, and seminal vesicles, central necrosis of the corpora lutea and arrested follicular development. Sorafenib-related effects on the reproductive organs of rats were manifested at daily oral doses ≥ 5 mg/kg (30 mg/m2). This dose results in an exposure (AUC) that is approximately 0.5 times the AUC in patients at the recommended human dose. Dogs showed tubular degeneration in the testes at 30 mg/kg/day (600 mg/m2/day). This dose results in an exposure that is approximately 0.3 times the AUC at the recommended human dose. Oligospermia was observed in dogs at 60 mg/kg/day (1200 mg/m2/day) of sorafenib. Adequate contraception should be used during therapy and for at least 2 weeks after completing therapy.
|clinicalStudies======Hepatocellular Carcinoma=====
*The HCC Study was a Phase 3, international, multicenter, randomized, double blind, placebo-controlled trial in patients with unresectable [[hepatocellular carcinoma]]. Overall survival was the primary endpoint. A total of 602 patients were randomized; 299 to Sorafenib 400 mg twice daily and 303 to matching placebo. Demographics and baseline disease characteristics were similar between the Sorafenib and placebo-treated groups with regard to age, gender, race, performance status, etiology (including [[hepatitis B]], [[hepatitis C]] and [[alcoholic liver disease]]), TNM stage (stage I: <1% vs. <1%; stage II: 10.4% vs. 8.3%; stage III: 37.8% vs. 43.6%; stage IV: 50.8% vs. 46.9%), absence of both macroscopic vascular invasion and extrahepatic tumor spread (30.1% vs. 30.0%), and Barcelona Clinic Liver Cancer stage (stage B: 18.1% vs. 16.8%; stage C: 81.6% vs. 83.2%; stage D: <1% vs. 0%). Liver impairment by [[Child-Pugh score]] was comparable between the Sorafenib and placebo-treated groups (Class A: 95% vs. 98%; B: 5% vs. 2%). Only one patient with [[Child-Pugh]] class C was entered. Prior treatments included surgical resection procedures (19.1% vs. 20.5%), locoregional therapies (including radiofrequency ablation, percutaneous ethanol injection and transarterial chemoembolization; 38.8% vs. 40.6%), radiotherapy (4.3% vs. 5.0%) and systemic therapy (3.0% vs. 5.0%).


At ASCO 2007, results from the [http://www.asco.org/portal/site/ASCO/menuitem.34d60f5624ba07fd506fe310ee37a01d/?vgnextoid=76f8201eb61a7010VgnVCM100000ed730ad1RCRD&vmview=abst_detail_view&confID=47&abstractID=32716 SHARP trial] were presented, which showed efficacy of sorafenib in [[hepatocellular carcinoma]]. The primary endpoint was overall survival, which showed a 44% improvement in patients who received sorafenib compared to placebo ([[hazard ratio]] 0.69; 95% CI, 0.55 to 0.87; p=0.0001). Both median survival and time to progression showed 3-month improvements.  
*The trial was stopped for efficacy following a pre-specified second interim analysis for survival showing a statistically significant advantage for Sorafenib over placebo for overall survival (HR: 0.69, p= 0.00058) (see Table 4 and Figure 1). This advantage was consistent across all subsets analyzed. Final analysis of time to tumor progression (TTP) based on data from an earlier time point (by independent radiologic review) also was significantly longer in the Sorafenib arm (HR: 0.58, p=0.000007).  
[[file:Sorafenib Clinical Study 1.png|thumb|none|400px]]
[[file:Sorafenib Graph1.png|thumb|none|400px]]


Regulatory filing is planned.
=====Renal Cell Carcinoma=====
*The safety and efficacy of Sorafenib in the treatment of advanced renal cell carcinoma (RCC) were studied in the following two randomized controlled clinical trials. RCC Study 1 was a Phase 3, international, multicenter, randomized, double blind, placebo-controlled trial in patients with advanced [[renal cell carcinoma]] who had received one prior systemic therapy. Primary study endpoints included overall survival and progression-free survival (PFS). Tumor response rate was a secondary endpoint. The PFS analysis included 769 patients stratified by MSKCC (Memorial Sloan Kettering Cancer Center) prognostic risk category (low or intermediate) and country and randomized to Sorafenib 400 mg twice daily (N=384) or to placebo (N=385). Table 8 summarizes the demographic and disease characteristics of the study population analyzed. Baseline demographics and disease characteristics were well balanced for both treatment groups. The median time from initial diagnosis of RCC to randomization was 1.6 and 1.9 years for the Sorafenib and placebo-treated groups, respectively.
[[file:Sorafenib Study2.png|thumb|none|400px]]
[[file:Sorafenib Graph2.png|thumb|none|400px]]


==Side effects==
=====Differentiated Thyroid Carcinoma=====
[[Adverse drug reaction|Side effect]]s of sorafenib included skin rash, hand-foot skin reactions, diarrhea, and hypertension.
*The safety and effectiveness of Sorafenib was established in a multicenter, randomized (1:1), double-blind, placebo-controlled trial conducted in 417 patients with locally recurrent or metastatic, progressive differentiated [[thyroid carcinoma]] (DTC) refractory to [[radioactive iodine]]] ([[RAI]]) treatment]. Randomization was stratified by age (< 60 years versus ≥ 60 years) and geographical region (North America, Europe, and Asia).
 
*All patients were required to have actively progressing disease defined as progression within 14 months of enrollment. RAI-refractory disease was defined based on four criteria that were not mutually exclusive. All RAI treatments and diagnostic scans were to be performed under conditions of a low iodine diet and adequate [[TSH stimulation]]. Following are the RAI-refractory criteria and the proportion of patients in the study that met each one: a target lesion with no iodine uptake on RAI scan (68%); tumors with iodine uptake and progression after RAI treatment within 16 months of enrollment (12%); tumors with iodine uptake and multiple RAI treatments with the last treatment greater than 16 months prior to enrollment, and disease progression after each of two RAI treatments administered within 16 months of each other (7%); cumulative RAI dose ≥ 600 mCi administered (34%). The major efficacy outcome measure was progression-free survival (PFS) as determined by a blinded, independent radiological review using a modified Response Evaluation Criteria in Solid Tumors v. 1.0 (RECIST). RECIST was modified by inclusion of clinical progression of bone lesions based on the need for external beam radiation (4.4% of progression events). Additional efficacy outcomes measures included overall survival (OS), tumor response rate, and duration of response.
==Footnotes==
*Patients were randomized to receive Sorafenib 400 mg twice daily (n=207) or placebo (n=210). Of the 417 patients randomized, 48% were male, the median age was 63 years, 61% were 60 years or older, 60% were white, 62% had an ECOG performance status of 0, and 99% had undergone thyroidectomy. The histological diagnoses were papillary carcinoma in 57%, [[follicular carcinoma]] (including [[Hürthle cell]]) in 25%, and poorly differentiated carcinoma in 10%, and other in 8% of the study population. Metastases were present in 96% of the patients: lungs in 86%, lymph nodes in 51%, and bone in 27%. The median cumulative RAI activity administered prior to study entry was 400 mCi. A statistically significant prolongation in PFS was demonstrated among Sorafenib-treated patients compared to those receiving placebo. Following investigator-determined disease progression, 157 (75%) patients randomized to placebo crossed over to open-label Sorafenib, and 61 (30%) patients randomized to Sorafenib received open-label Sorafenib  There was no statistically significant difference in overall survival between the two treatment arms (see Table 9 and Figure 3).
<references/>
[[file:Sorafenib Study3.png|thumb|none|400px]]
 
[[file:Sorafenib Graph3.png|thumb|none|400px]]
==External links==
|howSupplied=Sorafenib tablets are supplied as round, biconvex, red film-coated tablets, debossed with the “Bayer cross” on one side and “200” on the other side, each containing sorafenib tosylate equivalent to 200 mg of sorafenib.
*[http://www.nexavar.com Nexavar.com] &ndash; Manufacturer's website
*[http://www.univgraph.com/bayer/inserts/nexavar.pdf Prescribing Information] &ndash; includes data from the key studies justifying the use of sorafenib for the treatment of kidney cancer (particularly clear cell renal cell carcinoma, which is associated with the von Hippel-Lindau gene)
*[http://www.fda.gov/cder/drug/InfoSheets/patient/sorafenibPIS.pdf Patient Information from FDA]
*[http://www.cancer.gov/clinicaltrials/DFCI-05033 Sorafenib in Treating Patients With Soft Tissue Sarcomas]
*{{ClinicalTrialsGov|NCT00217399}} -  Sorafenib and Anastrozole in Treating Postmenopausal Women With Metastatic Breast Cancer
*[http:/mpablog.typepad.com/david_foster] Two year experience blog on nexavar, sutent, side effects, etc.
{{Chemotherapeutic agents}}
[[Category:Cancer treatments]]
[[Category:Orphan drugs]]
 
[[zh:索拉非尼]]


Bottles of 120 tablets NDC 50419-488-58
|storage=Store at 25°C (77°F); excursions permitted to 15–30°C (59–86°F). Store in a dry place.
|drugImages=[[file:Sorafenib pill.png|thumb|none|400px]]
|packLabel=[[file:Sorafenib Package Label FDA.png|thumb|none|450px]]
|alcohol=Alcohol-Sorafenib interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
|brandNames=*[[NexAVAR]]
}}
{{LabelImage
|fileName=SorafenibPackage.png
}}
{{WH}}
{{WH}}
{{WikiDoc Sources}}
{{WikiDoc Sources}}
[[Category:Drugs]]
[[Category:Chemotherapeutic agents]]

Latest revision as of 14:47, 25 February 2015

{{DrugProjectFormSinglePage |authorTag=Alberto Plate [1] |genericName=Sorafenib |aOrAn=a |drugClass=kinase inhibitor |indicationType=treatment |indication=unresectable hepatocellular carcinoma, advanced renal cell carcinoma, locally recurrent or metastatic, progressive, differentiated thyroid carcinoma refractory to radioactive iodine treatment |adverseReactions=hypertension, acral erythema, alopecia, peeling of skin, rash, hypoalbuminemia, hypocalcemia, hypophosphatemia, raised TSH level, weight decreased, abdominal pain, decrease in appetite, diarrhea, Increased serum lipase level, anorexia, nausea, serum amylase raised, lymphocytopenia, thrombocytopenia, ALT/SGPT level raised, infections, fatigue and pain |blackBoxWarningTitle=TITLE |blackBoxWarningBody=Condition Name: (Content) |fdaLIADAdult======Recommended Dose for Hepatocellular Carcinoma, Renal Cell Carcinoma, and Differentiated Thyroid Carcinoma=====

  • Dosage: 200 mg q12h, taken 1 hour before or 2 hours after a meal. Treatment should continue until the patient is no longer clinically benefiting from therapy or until unacceptable toxicity occurs. Temporary interruption of Sorafenib is recommended in patients undergoing major surgical procedures.
Dose modifications for Hepatocellular Carcinoma and Renal Cell Carcinoma

When dose reduction is necessary, the Sorafenib dose may be reduced to 400 mg once daily. If additional dose reduction is required, Sorafenib may be reduced to a single 400 mg dose every other day. If dermatological toxicity presented, the following scheme should be followed:

Dose Modifications for Differentiated Thyroid Carcinoma
Dose Modification in Skin Toxicity

Following improvement of Grade 2 or 3 dermatologic toxicity to Grade 0–1 after at least 28 days of treatment on a reduced dose of Sorafenib, the dose of Sorafenib may be increased one dose level from the reduced dose. Approximately 50% of patients requiring a dose reduction for dermatologic toxicity are expected to meet these criteria for resumption of the higher dose and roughly 50% of patients resuming the previous dose are expected to tolerate the higher dose (that is, maintain the higher dose level without recurrent Grade 2 or higher dermatologic toxicity) |offLabelAdultGuideSupport=There is limited information regarding Off-Label Guideline-Supported Use of Sorafenib in adult patients. |offLabelAdultNoGuideSupport=There is limited information regarding Off-Label Non–Guideline-Supported Use of Sorafenib in adult patients. |offLabelPedGuideSupport=There is limited information regarding Off-Label Guideline-Supported Use of Sorafenib in pediatric patients. |offLabelPedNoGuideSupport=There is limited information regarding Off-Label Non–Guideline-Supported Use of Sorafenib in pediatric patients. |contraindications=*Sorafenib is contraindicated in patients with known severe hypersensitivity to sorafenib or any other component of Sorafenib.

|warnings======Risk of Cardiac Ischemia and/or Infarction=====

  • In the HCC study, the incidence of cardiac ischemia/infarction was 2.7% in Sorafenib-treated patients compared with 1.3% in the placebo-treated group, in RCC Study 1, the incidence of cardiac ischemia/infarction was higher in the Sorafenib-treated group (2.9%) compared with the placebo-treated group (0.4%), and in the DTC study, the incidence of cardiac ischemia/infarction was 1.9% in the Sorafenib-treated group compared with 0% in the placebo-treated group. Patients with unstable coronary artery disease or recent myocardial infarction were excluded from this study. Temporary or permanent discontinuation of Sorafenib should be considered in patients who develop cardiac ischemia and/or infarction.
Risk of Hemorrhage
  • An increased risk of bleeding may occur following Sorafenib administration. In the HCC study, an excess of bleeding regardless of causality was not apparent and the rate of bleeding from esophageal varices was 2.4% in Sorafenib-treated patients and 4% in placebo-treated patients. Bleeding with a fatal outcome from any site was reported in 2.4% of Sorafenib-treated patients and 4% in placebo-treated patients. In RCC Study 1, bleeding regardless of causality was reported in 15.3% of patients in the Sorafenib-treated group and 8.2% of patients in the placebo-treated group. The incidence of CTCAE Grade 3 and 4 bleeding was 2% and 0%, respectively, in Sorafenib-treated patients, and 1.3% and 0.2%, respectively, in placebo-treated patients. There was one fatal hemorrhage in each treatment group in RCC Study 1. In the DTC study, bleeding was reported in 17.4% of Sorafenib-treated patients and 9.6% of placebo-treated patients; however the incidence of CTCAE Grade 3 bleeding was 1% in Sorafenib-treated patients and 1.4% in placebo-treated patients. There was no Grade 4 bleeding reported and there was one fatal hemorrhage in a placebo-treated patient. If any bleeding necessitates medical intervention, permanent discontinuation of Sorafenib should be considered. Due to the potential risk of bleeding, tracheal, bronchial, and esophageal infiltration should be treated with local therapy prior to administering Sorafenib in patients with DTC.
Risk of Hypertension
  • Monitor blood pressure weekly during the first 6 weeks of Sorafenib. Thereafter, monitor blood pressure and treat hypertension, if required, in accordance with standard medical practice. In the HCC study, hypertension was reported in approximately 9.4% of Sorafenib-treated patients and 4.3% of patients in the placebo-treated group. In RCC Study 1, hypertension was reported in approximately 16.9% of Sorafenib-treated patients and 1.8% of patients in the placebo-treated group. In the DTC study, hypertension was reported in 40.6% of Sorafenib-treated patients and 12.4% of placebo-treated patients. Hypertension was usually mild to moderate, occurred early in the course of treatment, and was managed with standard antihypertensive therapy. In cases of severe or persistent hypertension despite institution of antihypertensive therapy, consider temporary or permanent discontinuation of Sorafenib. Permanent discontinuation due to hypertension occurred in 1 of 297 Sorafenib-treated patients in the HCC study, 1 of 451 Sorafenib-treated patients in RCC Study 1, and 1 of 207 Sorafenib-treated patients in the DTC study.
Risk of Dermatologic Toxicities
  • Hand-foot skin reaction and rash represent the most common adverse reactions attributed to Sorafenib. Rash and hand-foot skin reaction are usually CTCAE Grade 1 and 2 and generally appear during the first six weeks of treatment with Sorafenib. Management of dermatologic toxicities may include topical therapies for symptomatic relief, temporary treatment interruption and/or dose modification of Sorafenib, or in severe or persistent cases, permanent discontinuation of Sorafenib. Permanent discontinuation of therapy due to hand-foot skin reaction occurred in 4 (1.3%) of 297 Sorafenib-treated patients with HCC, 3 (0.7%) of 451 Sorafenib-treated patients with RCC, and 11 (5.3%) of 207 Sorafenib-treated patients with DTC.
  • There have been reports of severe dermatologic toxicities, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). These cases may be life-threatening. Discontinue Sorafenib if SJS or TEN are suspected.
Risk of Gastrointestinal Perforation
Warfarin
  • Infrequent bleeding or elevations in the International Normalized Ratio (INR) have been reported in some patients taking warfarin while on Sorafenib. Monitor patients taking concomitant warfarin regularly for changes in prothrombin time (PT), INR or clinical bleeding episodes.
Wound Healing Complications
  • No formal studies of the effect of Sorafenib on wound healing have been conducted. Temporary interruption of Sorafenib is recommended in patients undergoing major surgical procedures. There is limited clinical experience regarding the timing of reinitiation of Sorafenib following major surgical intervention. Therefore, the decision to resume Sorafenib following a major surgical intervention should be based on clinical judgment of adequate wound healing.
Increased Mortality Observed with Sorafenib Administered in Combination with Carboplatin/Paclitaxel and Gemcitabine/Cisplatin in Squamous Cell Lung Cancer
Risk of QT Interval Prolongation
Drug-Induced Hepatitis
  • Sorafenib-induced hepatitis is characterized by a hepatocellular pattern of liver damage with significant increases of transaminases which may result in hepatic failure and death. Increases in bilirubin and INR may also occur. The incidence of severe drug-induced liver injury, defined as elevated transaminase levels above 20 times the upper limit of normal or transaminase elevations with significant clinical sequelae (for example, elevated INR, ascites, fatal, or transplantation), was two of 3,357 patients (0.06%) in a global monotherapy database. Monitor liver function tests regularly. In case of significantly increased transaminases without alternative explanation, such as viral hepatitis or progressing underlying malignancy, discontinue Sorafenib.
Embryofetal Risk
  • Based on its mechanism of action and findings in animals, Sorafenib may cause fetal harm when administered to a pregnant woman. Sorafenib caused embryo-fetal toxicities in animals at maternal exposures that were significantly lower than the human exposures at the recommended dose of 400 mg twice daily. Advise women of childbearing potential to avoid becoming pregnant while on Sorafenib because of the potential hazard to the fetus.
Impairment of Thyroid Stimulating Hormone Suppression in Differentiated Thyroid Carcinoma
  • Sorafenib impairs exogenous thyroid suppression. In the DTC study, 99% of patients had a baseline thyroid stimulating hormone (TSH) level less than 0.5 mU/L. Elevation of TSH level above 0.5 mU/L was observed in 41% of Sorafenib-treated patients as compared with 16% of placebo-treated patients. For patients with impaired TSH suppression while receiving Sorafenib, the median maximal TSH was 1.6 mU/L and 25% had TSH levels greater than 4.4 mU/L. Monitor TSH levels monthly and adjust thyroid replacement medication as needed in patients with DTC.

|clinicalTrials=====Adverse Reactions in HCC Study==== Adverse Reactions Reported in at Least 10% of Patients and at a Higher Rate in Sorafenib Arm than the Placebo Arm – HCC Study:

Constitutional symptoms
Dermatological/skin Effects
Gastrointestinal Effects
Hepatobiliary/Pancreas Effects

Hypertension was reported in 9% of patients treated with Sorafenib and 4% of those treated with placebo. CTCAE Grade 3 hypertension was reported in 4% of Sorafenib-treated patients and 1% of placebo-treated patients. No patients were reported with CTCAE Grade 4 reactions in either treatment group. Hemorrhage/bleeding was reported in 18% of those receiving Sorafenib and 20% of placebo-treated patients. The rates of CTCAE Grade 3 and 4 bleeding were also higher in the placebo-treated group (CTCAE Grade 3 – 3% Sorafenib and 5% placebo and CTCAE Grade 4 – 2% Sorafenib and 4% placebo). Bleeding from esophageal varices was reported in 2.4% in Sorafenib-treated patients and 4% of placebo-treated patients. Renal failure was reported in <1% of patients treated with Sorafenib and 3% of placebo-treated patients. The rate of adverse reactions (including those associated with progressive disease) resulting in permanent discontinuation was similar in both the Sorafenib and placebo-treated groups (32% of Sorafenib-treated patients and 35% of placebo-treated patients).

Laboratory Abnormalities

The following laboratory abnormalities were observed in patients with HCC:

  • Hypophosphatemia was a common laboratory finding, observed in 35% of Sorafenib-treated patients compared to 11% of placebo-treated patients; CTCAE Grade 3 hypophosphatemia (1–2 mg/dL) occurred in 11% of Sorafenib-treated patients and 2% of patients in the placebo-treated group; there was 1 case of CTCAE Grade 4 hypophosphatemia (<1 mg/dL) reported in the placebo-treated group. The etiology of hypophosphatemia associated with Sorafenib is not known.
  • Elevated lipase was observed in 40% of patients treated with Sorafenib compared to 37% of patients in the placebo-treated group. CTCAE Grade 3 or 4 lipase elevations occurred in 9% of patients in each group. Elevated amylase was observed in 34% of patients treated with Sorafenib compared to 29% of patients in the placebo-treated group. CTCAE Grade 3 or 4 amylase elevations were reported in 2% of patients in each group. Many of the lipase and amylase elevations were transient, and in the majority of cases Sorafenib treatment was not interrupted. Clinical pancreatitis was reported in 1 of 297 Sorafenib-treated patients (CTCAE Grade 2).
  • Elevations in liver function tests were comparable between the 2 arms of the study. Hypoalbuminemia was observed in 59% of Sorafenib-treated patients and 47% of placebo-treated patients; no CTCAE Grade 3 or 4 hypoalbuminemia was observed in either group.
  • INR elevations were observed in 42% of Sorafenib-treated patients and 34% of placebo-treated patients; CTCAE Grade 3 INR elevations were reported in 4% of Sorafenib-treated patients and 2% of placebo-treated patients; there was no CTCAE Grade 4 INR elevation in either group.
  • Lymphopenia was observed in 47% of Sorafenib-treated patients and 42% of placebo-treated patients.
  • Thrombocytopenia was observed in 46% of Sorafenib-treated patients and 41% of placebo-treated patients; CTCAE Grade 3 or 4 thrombocytopenia was reported in 4% of Sorafenib-treated patients and less than 1% of placebo-treated patients.
  • Hypocalcemia was reported in 27% of Sorafenib-treated patients and 15% of placebo-treated patients. CTCAE Grade 3 hypocalcemia (6–7 mg /dL) occurred in 2% of Sorafenib-treated patients and 1% of placebo-treated patients. CTCAE Grade 4 hypocalcemia (<6 mg/dL) occurred in 0.4% of Sorafenib-treated patients and in no placebo-treated patients.
  • Hypokalemia was reported in 9.5% of Sorafenib- treated patients compared to 5.9% of placebo-treated patients. Most reports of hypokalemia were low grade (CTCAE Grade 1). CTCAE Grade 3 hypokalemia occurred in 0.4% of Sorafenib-treated patients and 0.7% of placebo-treated patients. There were no reports of Grade 4 hypokalemia.

Adverse Reactions in RCC Study 1

Adverse Reactions Reported in at Least 10% of Patients and at a Higher Rate in Sorafenib Arm than the Placebo Arm – RCC Study 1:

Cardiovascular Effects
Constitutional Symptoms
Dermatologic Effects
Gastrointestinal Effects
Hemorragic Effects
Neurological Effects
Pain
Respiratory Effects
Laboratory Findings

The following laboratory abnormalities were observed in patients with RCC in Study 1:

  • Hypophosphatemia was a common laboratory finding, observed in 45% of Sorafenib-treated patients compared to 11% of placebo-treated patients. CTCAE Grade 3 hypophosphatemia (1–2 mg/dL) occurred in 13% of Sorafenib-treated patients and 3% of patients in the placebo-treated group. There were no cases of CTCAE Grade 4 hypophosphatemia (<1 mg/dL) reported in either Sorafenib or placebo-treated patients. The etiology of hypophosphatemia associated with Sorafenib is not known.
  • Elevated lipase was observed in 41% of patients treated with Sorafenib compared to 30% of patients in the placebo-treated group. CTCAE Grade 3 or 4 lipase elevations occurred in 12% of patients in the Sorafenib-treated group compared to 7% of patients in the placebo-treated group. Elevated amylase was observed in 30% of patients treated with Sorafenib compared to 23% of patients in the placebo-treated group. CTCAE Grade 3 or 4 amylase elevations were reported in 1% of patients in the Sorafenib-treated group compared to 3% of patients in the placebo-treated group. Many of the Sorafenib and amylase elevations were transient, and in the majority of cases Sorafenib treatment was not interrupted. Clinical pancreatitis was reported in 3 of 451 Sorafenib-treated patients (one CTCAE Grade 2 and two Grade 4) and 1 of 451 patients (CTCAE Grade 2) in the placebo-treated group.
  • Lymphopenia was observed in 23% of Sorafenib-treated patients and 13% of placebo-treated patients. CTCAE Grade 3 or 4 lymphopenia was reported in 13% of Sorafenib-treated patients and 7% of placebo-treated patients. Neutropenia was observed in 18% of Sorafenib-treated patients and 10% of placebo-treated patients. CTCAE Grade 3 or 4 neutropenia was reported in 5% of Sorafenib-treated patients and 2% of placebo-treated patients.
  • Anemia was observed in 44% of Sorafenib-treated patients and 49% of placebo-treated patients. CTCAE Grade 3 or 4 anemia was reported in 2% of Sorafenib-treated patients and 4% of placebo-treated patients.
  • Thrombocytopenia was observed in 12% of Sorafenib-treated patients and 5% of placebo-treated patients. CTCAE Grade 3 or 4 thrombocytopenia was reported in 1% of Sorafenib-treated patients and in no placebo-treated patients.
  • Hypocalcemia was reported in 12% of Sorafenib-treated patients and 8% of placebo-treated patients. CTCAE Grade 3 hypocalcemia (6–7 mg/dL) occurred in 1% of Sorafenib-treated patients and 0.2% of placebo-treated patients, and CTCAE Grade 4 hypocalcemia (<6 mg/dL) occurred in 1% of Sorafenib-treated patients and 0.5% of placebo-treated patients.
  • Hypokalemia was reported in 5.4% of Sorafenib-treated patients compared to 0.7% of placebo-treated patients. Most reports of hypokalemia were low grade (CTCAE Grade 1). CTCAE Grade 3 hypokalemia occurred in 1.1% of Sorafenib-treated patients and 0.2% of placebo-treated patients. There were no reports of Grade 4 hypokalemia.

Adverse Reactions in DTC Study

Per-Patient Incidence of Selected Adverse Reactions Occurring at a Higher Incidence in Sorafenib-Treated Patients [Between Arm Difference of ≥ 5% (All Grades)1 or ≥ 2% (Grades 3 and 4)]:

Gastrointestinal Effects
General Disorders and Administration Site Conditions
Investigations
Metabolism and Nutrition Disorders
Musculoskeletal and connective tissue disorders
Neoplasms benign, malignant and unspecified
Central Nervous System Effects
Respiratory, thoracic and mediastinal disorders
Skin and Subcutaneous Tissue Disorders
Vascular Disorders
Laboratory Findings
  • Elevated TSH levels are discussed elsewhere in the labeling. The relative increase for the following laboratory abnormalities observed in Sorafenib-treated DTC patients as compared to placebo-treated patients is similar to that observed in the RCC and HCC studies: lipase, amylase, hypokalemia, hypophosphatemia, neutropenia, lymphopenia, anemia, and thrombocytopenia.
  • Serum ALT and AST elevations were observed in 59% and 54% of the Sorafenib-treated patients as compared to 24% and 15% of placebo-treated patients, respectively. High grade (≥ 3) ALT and AST elevations were observed in 4% and 2%, respectively, in the Sorafenib-treated patients as compared to none of the placebo-treated patients.
  • Hypocalcemia was more frequent and more severe in patients with DTC, especially those with a history of hypoparathyroidism, compared to patients with RCC or HCC. Hypocalcemia was observed in 36% of DTC patients receiving Sorafenib (with 10% ≥ Grade 3) as compared with 11% of placebo-treated patients (3% ≥ Grade 3). In the DTC study, serum calcium levels were monitored monthly.

Additional Data from Multiple Clinical Trials

The following additional drug-related adverse reactions and laboratory abnormalities were reported from clinical trials of Sorafenib (very common 10% or greater, common 1 to less than 10%, uncommon 0.1% to less than 1%, rare less than 0.1 %):

Rare: drug-induced hepatitis (including hepatic failure and death)

In addition, the following medically significant adverse reactions were uncommon during clinical trials of Sorafenib: transient ischemic attack, arrhythmia, and thromboembolism. For these adverse reactions, the causal relationship of Sorafenib has not been established. |postmarketing=The following adverse drug reactions have been identified during post-approval use of Sorafenib. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

|drugInteractions======Effect of Strong CYP3A4 Inducers on Sorafenib=====

Effect of Strong CYP3A4 Inhibitors on Sorafenib
  • Ketoconazole, a strong inhibitor of CYP3A4 and P-glycoprotein, administered at a dose of 400 mg once daily for 7 days did not alter the mean AUC of a single oral dose of Sorafenib 50 mg in healthy volunteers.
Effect of Sorafenib on Other Drugs
Neomycin
  • Neomycin administered as an oral dose of 1 g three times daily for 5 days decreased the mean AUC of sorafenib by 54% in healthy volunteers administered a single oral dose of Sorafenib 400 mg. The effects of other antibiotics on the pharmacokinetics of sorafenib have not been studied.
Drugs that Increase Gastric pH
  • The aqueous solubility of sorafenib is pH dependent, with higher pH resulting in lower solubility. However, omeprazole, a proton pump inhibitor, administered at a dose of 40 mg once daily for 5 days, did not result in a clinically meaningful change in sorafenib single dose exposure. No dose adjustment for Sorafenib is necessary.

|FDAPregCat=D |useInPregnancyFDA=*Based on its mechanism of action and findings in animals, Sorafenib may cause fetal harm when administered to a pregnant woman. Sorafenib caused embryo-fetal toxicities in animals at maternal exposures that were significantly lower than the human exposures at the recommended dose of 400 mg twice daily. There are no adequate and well-controlled studies in pregnant women using Sorafenib Inform patients of childbearing potential that Sorafenib can cause birth defects or fetal loss. Instruct both men and women of childbearing potential to use effective birth control during treatment with Sorafenib and for at least 2 weeks after stopping treatment. Counsel female patients to contact their healthcare provider if they become pregnant while taking Sorafenib.

  • When administered to rats and rabbits during the period of organogenesis, sorafenib was teratogenic and induced embryo-fetal toxicity (including increased post-implantation loss, resorptions, skeletal retardations, and retarded fetal weight). The effects occurred at doses considerably below the recommended human dose of 400 mg twice daily (approximately 500 mg/m2/day on a body surface area basis). Adverse intrauterine development effects were seen at doses ≥0.2 mg/kg/day (1.2 mg/m2/day) in rats and 0.3 mg/kg/day (3.6 mg/m2/day) in rabbits. These doses result in exposures (AUC) approximately 0.008 times the AUC seen in patients at the recommended human dose. A NOAEL (no observed adverse effect level) was not defined for either species, since lower doses were not tested.

|useInNursing=*It is not known whether sorafenib is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from Sorafenib, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

  • Following administration of radiolabeled sorafenib to lactating Wistar rats, approximately 27% of the radioactivity was secreted into the milk. The milk to plasma AUC ratio was approximately 5:1.

|useInPed=The safety and effectiveness of Sorafenib in pediatric patients have not been studied.

  • Repeat dosing of sorafenib to young and growing dogs resulted in irregular thickening of the femoral growth plate at daily sorafenib doses ≥ 600 mg/m2 (approximately 0.3 times the AUC at the recommended human dose), hypocellularity of the bone marrow adjoining the growth plate at 200 mg/m2/day (approximately 0.1 times the AUC at the recommended human dose), and alterations of the dentin composition at 600 mg/m2/day. Similar effects were not observed in adult dogs when dosed for 4 weeks or less.

|useInGeri=*In total, 59% of HCC patients treated with Sorafenib were age 65 years or older, and 19% were 75 and older. In total, 32% of RCC patients treated with Sorafenib were age 65 years or older, and 4% were 75 and older. No differences in safety or efficacy were observed between older and younger patients, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. |useInRenalImpair=*No correlation between sorafenib exposure and renal function was observed following administration of a single oral dose of Sorafenib 400 mg to subjects with normal renal function and subjects with mild (CLcr 50–80 mL/min), moderate (CLcr 30–<50 mL/min), or severe (CLcr <30 mL/min) renal impairment who are not on dialysis. No dose adjustment is necessary for patients with mild, moderate or severe renal impairment who are not on dialysis. The pharmacokinetics of sorafenib have not been studied in patients who are on dialysis |useInHepaticImpair=*In a trial of HCC patients with mild (Child-Pugh A) or moderate (Child-Pugh B) hepatic impairment, the systemic exposure (AUC) of sorafenib was within the range observed in patients without hepatic impairment. In another trial in subjects without HCC, the mean AUC was similar for subjects with mild (n=15) and moderate (n=14) hepatic impairment compared to subjects (n=15) with normal hepatic function. No dose adjustment is necessary for patients with mild or moderate hepatic impairment. The pharmacokinetics of sorafenib have not been studied in patients with severe (Child-Pugh C) hepatic impairment |administration=*Oral (tablets) |overdose=*There is no specific treatment for Sorafenib overdose. The highest dose of Sorafenib studied clinically is 800 mg twice daily. The adverse reactions observed at this dose were primarily diarrhea and dermatologic. No information is available on symptoms of acute overdose in animals because of the saturation of absorption in oral acute toxicity studies conducted in animals. In cases of suspected overdose, Sorafenib should be withheld and supportive care instituted. |drugBox=

Sorafenib
Systematic (IUPAC) name
4-[4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]
phenoxy]-N-methyl-pyridine-2-carboxamide
Identifiers
CAS number 284461-73-0
ATC code L01XE05
PubChem 216239
DrugBank APRD01304
Chemical data
Formula Template:OrganicBox atomTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox 
Mol. mass 464.825 g/mol
SMILES eMolecules & PubChem
Synonyms Sorafenib
Sorafenib tosylate
Pharmacokinetic data
Bioavailability 29-49%
Protein binding 99.5%
Metabolism Hepatic oxidation and glucuronidation (CYP3A4-mediated)
Half life 25–48 hours
Excretion Fecal (77%) and renal (19%)
Therapeutic considerations
Licence data

EUUS

Pregnancy cat.

D(AU) D(US)

Legal status

[[Prescription drug|Template:Unicode-only]](US)

Routes Oral

|mechAction=*Sorafenib is a kinase inhibitor that decreases tumor cell proliferation in vitro. Sorafenib was shown to inhibit multiple intracellular (c-CRAF, BRAF and mutant BRAF) and cell surface kinases (KIT, FLT- 3, RET, RET/PTC, VEGFR-1, VEGFR- 2, VEGFR- 3, and PDGFR-ß). Several of these kinases are thought to be involved in tumor cell signaling, angiogenesis and apoptosis. Sorafenib inhibited tumor growth of HCC, RCC, and DTC human tumor xenografts in immunocompromised mice. Reductions in tumor angiogenesis were seen in models of HCC and RCC upon sorafenib treatment, and increases in tumor apoptosis were observed in models of HCC, RCC, and DTC. |structure=*Sorafenib tosylate has the chemical name 4-(4-{3-[4-Chloro-3-(trifluoromethyl)phenyl]ureido}phenoxy)N2-methylpyridine-2-carboxamide 4-methylbenzenesulfonate and its structural formula is:

|PD=*The effect of Sorafenib 400 mg twice daily on the QTc interval was evaluated in a multi-center, open-label, non-randomized trial in 53 patients with advanced cancer. No large changes in the mean QTc intervals (that is, >20 ms) from baseline were detected in the trial. After one 28-day treatment cycle, the largest mean QTc interval change of 8.5 ms (upper bound of two-sided 90% confidence interval, 13.3 ms) was observed at 6 hours post-dose on day 1 of cycle 2 |PK=*The mean elimination half-life of sorafenib was approximately 25 to 48 hours. Multiple doses of Sorafenib for 7 days resulted in a 2.5- to 7-fold accumulation compared to a single dose. Steady-state plasma sorafenib concentrations were achieved within 7 days, with a peak-to-trough ratio of mean concentrations of less than 2. The steady-state concentrations of sorafenib following administration of 400 mg Sorafenib twice daily were evaluated in DTC, RCC and HCC patients. Patients with DTC have mean steady-state concentrations that are 1.8-fold higher than patients with HCC and 2.3-fold higher than those with RCC. The reason for increased sorafenib concentrations in DTC patients is unknown.

Absorption and Distribution
  • After administration of Sorafenib tablets, the mean relative bioavailability was 38–49% when compared to an oral solution. Following oral administration, sorafenib reached peak plasma levels in approximately 3 hours. With a moderate-fat meal (30% fat; 700 calories), bioavailability was similar to that in the fasted state. With a high-fat meal (50% fat; 900 calories), bioavailability was reduced by 29% compared to that in the fasted state. It is recommended that Sorafenib be administered without food. Mean Cmax and AUC increased less than proportionally beyond oral doses of 400 mg administered twice daily. In vitro binding of sorafenib to human plasma proteins was 99.5%.
Metabolism and Elimination
  • Sorafenib undergoes oxidative metabolism by hepatic CYP3A4, as well as glucuronidation by UGT1A9. Inducers of CYP3A4 activity can decrease the systemic exposure of sorafenib. Sorafenib accounted for approximately 70–85% of the circulating analytes in plasma at steady-state. Eight metabolites of sorafenib have been identified, of which 5 have been detected in plasma. The main circulating metabolite of sorafenib, the pyridine N-oxide that comprises approximately 9–16% of circulating analytes at steady-state, showed in vitro potency similar to that of sorafenib. Following oral administration of a 100 mg dose of a solution formulation of sorafenib, 96% of the dose was recovered within 14 days, with 77% of the dose excreted in feces and 19% of the dose excreted in urine as glucuronidated metabolites. Unchanged sorafenib, accounting for 51% of the dose, was found in feces but not in urine.
Effects of Age, Gender and Race
  • A study of the pharmacokinetics of sorafenib indicated that the mean AUC of sorafenib in Asians (N=78) was 30% lower than in Caucasians (N=40). Gender and age do not have a clinically meaningful effect on the pharmacokinetics of sorafenib.
Renal Impairment
  • Mild (CLcr 50-80 mL/min), moderate (CLcr 30 - <50 mL/min), and severe (CLcr <30 mL/min) renal impairment do not affect the pharmacokinetics of sorafenib. No dose adjustment is necessary.
Hepatic Impairment
  • Mild (Child-Pugh A) and moderate (Child-Pugh B) hepatic impairment do not affect the pharmacokinetics of sorafenib. No dose adjustment is necessary.
Drug-Drug Interactions

Studies in human liver microsomes demonstrated that sorafenib competitively inhibited CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. However, Sorafenib 400 mg twice daily for 28 days with substrates of CYP3A4, CYP2D6 and CYP2C19 did not increase the systemic exposure of these substrates. Studies with cultured human hepatocytes demonstrated that sorafenib did not increase CYP1A2 and CYP3A4 activities, suggesting that sorafenib is unlikely to induce CYP1A2 or CYP3A4 in humans. Sorafenib inhibits glucuronidation by UGT1A1 and UGT1A9 in vitro. Sorafenib could increase the systemic exposure of concomitantly administered drugs that are UGT1A1 or UGT1A9 substrates. Sorafenib inhibited P-glycoprotein in vitro. Sorafenib could increase the concentrations of concomitantly administered drugs that are P-glycoprotein substrates. |nonClinToxic======Carcinogenesis, Mutagenesis, Impairment of Fertility=====

  • Carcinogenicity studies have not been performed with sorafenib. Sorafenib was clastogenic when tested in an in vitro mammalian cell assay (Chinese hamster ovary) in the presence of metabolic activation. Sorafenib was not mutagenic in the in vitro Ames bacterial cell assay or clastogenic in an in vivo mouse micronucleus assay. One intermediate in the manufacturing process, which is also present in the final drug substance (<0.15%), was positive for mutagenesis in an in vitro bacterial cell assay (Ames test) when tested independently.
  • No specific studies with sorafenib have been conducted in animals to evaluate the effect on fertility. However, results from the repeat-dose toxicity studies suggest there is a potential for sorafenib to impair reproductive function and fertility. Multiple adverse effects were observed in male and female reproductive organs, with the rat being more susceptible than mice or dogs. Typical changes in rats consisted of testicular atrophy or degeneration, degeneration of epididymis, prostate, and seminal vesicles, central necrosis of the corpora lutea and arrested follicular development. Sorafenib-related effects on the reproductive organs of rats were manifested at daily oral doses ≥ 5 mg/kg (30 mg/m2). This dose results in an exposure (AUC) that is approximately 0.5 times the AUC in patients at the recommended human dose. Dogs showed tubular degeneration in the testes at 30 mg/kg/day (600 mg/m2/day). This dose results in an exposure that is approximately 0.3 times the AUC at the recommended human dose. Oligospermia was observed in dogs at 60 mg/kg/day (1200 mg/m2/day) of sorafenib. Adequate contraception should be used during therapy and for at least 2 weeks after completing therapy.

|clinicalStudies======Hepatocellular Carcinoma=====

  • The HCC Study was a Phase 3, international, multicenter, randomized, double blind, placebo-controlled trial in patients with unresectable hepatocellular carcinoma. Overall survival was the primary endpoint. A total of 602 patients were randomized; 299 to Sorafenib 400 mg twice daily and 303 to matching placebo. Demographics and baseline disease characteristics were similar between the Sorafenib and placebo-treated groups with regard to age, gender, race, performance status, etiology (including hepatitis B, hepatitis C and alcoholic liver disease), TNM stage (stage I: <1% vs. <1%; stage II: 10.4% vs. 8.3%; stage III: 37.8% vs. 43.6%; stage IV: 50.8% vs. 46.9%), absence of both macroscopic vascular invasion and extrahepatic tumor spread (30.1% vs. 30.0%), and Barcelona Clinic Liver Cancer stage (stage B: 18.1% vs. 16.8%; stage C: 81.6% vs. 83.2%; stage D: <1% vs. 0%). Liver impairment by Child-Pugh score was comparable between the Sorafenib and placebo-treated groups (Class A: 95% vs. 98%; B: 5% vs. 2%). Only one patient with Child-Pugh class C was entered. Prior treatments included surgical resection procedures (19.1% vs. 20.5%), locoregional therapies (including radiofrequency ablation, percutaneous ethanol injection and transarterial chemoembolization; 38.8% vs. 40.6%), radiotherapy (4.3% vs. 5.0%) and systemic therapy (3.0% vs. 5.0%).
  • The trial was stopped for efficacy following a pre-specified second interim analysis for survival showing a statistically significant advantage for Sorafenib over placebo for overall survival (HR: 0.69, p= 0.00058) (see Table 4 and Figure 1). This advantage was consistent across all subsets analyzed. Final analysis of time to tumor progression (TTP) based on data from an earlier time point (by independent radiologic review) also was significantly longer in the Sorafenib arm (HR: 0.58, p=0.000007).
Renal Cell Carcinoma
  • The safety and efficacy of Sorafenib in the treatment of advanced renal cell carcinoma (RCC) were studied in the following two randomized controlled clinical trials. RCC Study 1 was a Phase 3, international, multicenter, randomized, double blind, placebo-controlled trial in patients with advanced renal cell carcinoma who had received one prior systemic therapy. Primary study endpoints included overall survival and progression-free survival (PFS). Tumor response rate was a secondary endpoint. The PFS analysis included 769 patients stratified by MSKCC (Memorial Sloan Kettering Cancer Center) prognostic risk category (low or intermediate) and country and randomized to Sorafenib 400 mg twice daily (N=384) or to placebo (N=385). Table 8 summarizes the demographic and disease characteristics of the study population analyzed. Baseline demographics and disease characteristics were well balanced for both treatment groups. The median time from initial diagnosis of RCC to randomization was 1.6 and 1.9 years for the Sorafenib and placebo-treated groups, respectively.
Differentiated Thyroid Carcinoma
  • The safety and effectiveness of Sorafenib was established in a multicenter, randomized (1:1), double-blind, placebo-controlled trial conducted in 417 patients with locally recurrent or metastatic, progressive differentiated thyroid carcinoma (DTC) refractory to radioactive iodine] (RAI) treatment]. Randomization was stratified by age (< 60 years versus ≥ 60 years) and geographical region (North America, Europe, and Asia).
  • All patients were required to have actively progressing disease defined as progression within 14 months of enrollment. RAI-refractory disease was defined based on four criteria that were not mutually exclusive. All RAI treatments and diagnostic scans were to be performed under conditions of a low iodine diet and adequate TSH stimulation. Following are the RAI-refractory criteria and the proportion of patients in the study that met each one: a target lesion with no iodine uptake on RAI scan (68%); tumors with iodine uptake and progression after RAI treatment within 16 months of enrollment (12%); tumors with iodine uptake and multiple RAI treatments with the last treatment greater than 16 months prior to enrollment, and disease progression after each of two RAI treatments administered within 16 months of each other (7%); cumulative RAI dose ≥ 600 mCi administered (34%). The major efficacy outcome measure was progression-free survival (PFS) as determined by a blinded, independent radiological review using a modified Response Evaluation Criteria in Solid Tumors v. 1.0 (RECIST). RECIST was modified by inclusion of clinical progression of bone lesions based on the need for external beam radiation (4.4% of progression events). Additional efficacy outcomes measures included overall survival (OS), tumor response rate, and duration of response.
  • Patients were randomized to receive Sorafenib 400 mg twice daily (n=207) or placebo (n=210). Of the 417 patients randomized, 48% were male, the median age was 63 years, 61% were 60 years or older, 60% were white, 62% had an ECOG performance status of 0, and 99% had undergone thyroidectomy. The histological diagnoses were papillary carcinoma in 57%, follicular carcinoma (including Hürthle cell) in 25%, and poorly differentiated carcinoma in 10%, and other in 8% of the study population. Metastases were present in 96% of the patients: lungs in 86%, lymph nodes in 51%, and bone in 27%. The median cumulative RAI activity administered prior to study entry was 400 mCi. A statistically significant prolongation in PFS was demonstrated among Sorafenib-treated patients compared to those receiving placebo. Following investigator-determined disease progression, 157 (75%) patients randomized to placebo crossed over to open-label Sorafenib, and 61 (30%) patients randomized to Sorafenib received open-label Sorafenib There was no statistically significant difference in overall survival between the two treatment arms (see Table 9 and Figure 3).

|howSupplied=Sorafenib tablets are supplied as round, biconvex, red film-coated tablets, debossed with the “Bayer cross” on one side and “200” on the other side, each containing sorafenib tosylate equivalent to 200 mg of sorafenib.

Bottles of 120 tablets NDC 50419-488-58 |storage=Store at 25°C (77°F); excursions permitted to 15–30°C (59–86°F). Store in a dry place.

|drugImages=

|packLabel=

|alcohol=Alcohol-Sorafenib interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication. |brandNames=*NexAVAR }} {{#subobject:

 |Label Page=Sorafenib
 |Label Name=SorafenibPackage.png

}}

Template:WH Template:WikiDoc Sources