Lyme disease future or investigational therapies

Jump to: navigation, search

Lyme disease Microchapters


Patient Information


Historical Perspective



Epidemiology and Demographics


Differentiating Lyme disease from other Diseases

Risk Factors


Natural History, Complications and Prognosis


History and Symptoms

Physical Examination

Laboratory Findings



CT scan



Other Imaging Findings

Other Diagnostic Sudies


Medical Therapy


Primary Prevention

Secondary Prevention

Future or Investigational Therapies

Case Studies

Case #1

Lyme disease future or investigational therapies On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides


American Roentgen Ray Society Images of Lyme disease future or investigational therapies

All Images
Echo & Ultrasound
CT Images

Ongoing Trials at Clinical

US National Guidelines Clearinghouse

NICE Guidance

FDA on Lyme disease future or investigational therapies

CDC on Lyme disease future or investigational therapies

Lyme disease future or investigational therapies in the news

Blogs on Lyme disease future or investigational therapies

Directions to Hospitals Treating Lyme disease

Risk calculators and risk factors for Lyme disease future or investigational therapies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Anmol Pitliya, M.B.B.S. M.D.[2]


Future and investigational therapies of Lyme disease are directed towards decreasing the pro-inflammatory immune process and decreasing Th1 upregulation. Studies have also been conducted to test the role of neurohormones in neuropsychiatric complications of Lyme disease. Other therapies including hyperbaric oxygen therapy, antifungal medications and use of bee venom are also under investigation.

Future or Investigational Therapies

Psycho-neuroimmunological therapies

Hyperbaric oxygen therapy

  • The use of hyperbaric oxygen therapy (which is used conventionally to treat a number of other conditions), as an adjunct to antibiotics for Lyme has been discussed.[6]
  • Though there are no published data from clinical trials to support its use, preliminary results using a mouse model suggest its effectiveness against B. burgdorferi both in vitro and in vivo.[7]

Antifungal medications

  • Some clinical research has shown potential for the antifungal azole medications such as fluconazole for the treatment of Lyme disease, but this has yet to be repeated in a controlled study or postulated a developed hypothetical model for its use.[8]

Alternative medicine

  • One approach in the field of alternative medicine is the use of bee venom to treat Lyme disease because it contains the peptide melittin, which has been shown to exert inhibitory effects on Lyme bacteria in vitro; however, no clinical trials of this treatment have been carried out.[9]


  1. Elenkov IJ, Iezzoni DG, Daly A, Harris AG, Chrousos GP (2005). "Cytokine dysregulation, inflammation and well-being". Neuroimmunomodulation. 12 (5): 255–69. doi:10.1159/000087104. PMID 16166805.
  2. Calcagni E, Elenkov I (2006). "Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases". Ann. N. Y. Acad. Sci. 1069: 62–76. doi:10.1196/annals.1351.006. PMID 16855135.
  3. Gasse T, Murr C, Meyersbach P; et al. (1994). "Neopterin production and tryptophan degradation in acute Lyme neuroborreliosis versus late Lyme encephalopathy". European journal of clinical chemistry and clinical biochemistry : journal of the Forum of European Clinical Chemistry Societies. 32 (9): 685–9. PMID 7865624.
  4. Kubera M, Lin AH, Kenis G, Bosmans E, van Bockstaele D, Maes M (2001). "Anti-Inflammatory effects of antidepressants through suppression of the interferon-gamma/interleukin-10 production ratio". Journal of clinical psychopharmacology. 21 (2): 199–206. PMID 11270917.
  5. Diamond M, Kelly JP, Connor TJ (2006). "Antidepressants suppress production of the Th1 cytokine interferon-gamma, independent of monoamine transporter blockade". European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. 16 (7): 481–90. doi:10.1016/j.euroneuro.2005.11.011. PMID 16388933.
  6. Taylor R, Simpson I (2005). "Review of treatment options for Lyme borreliosis". J Chemother. 17 Suppl 2: 3–16. PMID 16315580.
  7. Pavia C (2003). "Current and novel therapies for Lyme disease". Expert Opin Investig Drugs. 12 (6): 1003–16. PMID 12783604.
  8. Schardt FW (2004). "Clinical effects of fluconazole in patients with neuroborreliosis". Eur. J. Med. Res. 9 (7): 334–6. PMID 15337633.
  9. Lubke LL, Garon CF (1997). "The antimicrobial agent melittin exhibits powerful in vitro inhibitory effects on the Lyme disease spirochete". Clin. Infect. Dis. 25 Suppl 1: S48–51. PMID 9233664.