ST elevation myocardial infarction percutaneous coronary intervention following fibrinolytic administration

Revision as of 15:53, 25 October 2012 by Michael Maddaleni (talk | contribs) (/* ACC / AHA Guidelines- Immediate (or Emergency) Invasive Strategy and Rescue PCI (DO NOT EDIT){{cite journal |author=Antman EM, Hand M, Armstrong PW, et al |title=2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients ...)
Jump to navigation Jump to search

Acute Coronary Syndrome Main Page

ST Elevation Myocardial Infarction Microchapters

Home

Patient Information

Overview

Pathophysiology

Pathophysiology of Vessel Occlusion
Pathophysiology of Reperfusion
Gross Pathology
Histopathology

Causes

Differentiating ST elevation myocardial infarction from other Diseases

Epidemiology and Demographics

Risk Factors

Triggers

Natural History and Complications

Risk Stratification and Prognosis

Pregnancy

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

EKG Examples

Chest X Ray

Cardiac MRI

Echocardiography

Coronary Angiography

Treatment

Pre-Hospital Care

Initial Care

Oxygen
Nitrates
Analgesics
Aspirin
Beta Blockers
Antithrombins
The coronary care unit
The step down unit
STEMI and Out-of-Hospital Cardiac Arrest
Pharmacologic Reperfusion
Reperfusion Therapy (Overview of Fibrinolysis and Primary PCI)
Fibrinolysis
Reperfusion at a Non–PCI-Capable Hospital:Recommendations
Mechanical Reperfusion
The importance of reducing Door-to-Balloon times
Primary PCI
Adjunctive and Rescue PCI
Rescue PCI
Facilitated PCI
Adjunctive PCI
CABG
Management of Patients Who Were Not Reperfused
Assessing Success of Reperfusion
Antithrombin Therapy
Antithrombin therapy
Unfractionated heparin
Low Molecular Weight Heparinoid Therapy
Direct Thrombin Inhibitor Therapy
Factor Xa Inhibition
DVT prophylaxis
Long term anticoagulation
Antiplatelet Agents
Aspirin
Thienopyridine Therapy
Glycoprotein IIbIIIa Inhibition
Other Initial Therapy
Inhibition of the Renin-Angiotensin-Aldosterone System
Magnesium Therapy
Glucose Control
Calcium Channel Blocker Therapy
Lipid Management

Pre-Discharge Care

Recommendations for Perioperative Management–Timing of Elective Noncardiac Surgery in Patients Treated With PCI and DAPT

Post Hospitalization Plan of Care

Long-Term Medical Therapy and Secondary Prevention

Overview
Inhibition of the Renin-Angiotensin-Aldosterone System
Cardiac Rehabilitation
Pacemaker Implantation
Long Term Anticoagulation
Implantable Cardioverter Defibrillator
ICD implantation within 40 days of myocardial infarction
ICD within 90 days of revascularization

Case Studies

Case #1

Case #2

Case #3

Case #4

Case #5

ST elevation myocardial infarction percutaneous coronary intervention following fibrinolytic administration On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on ST elevation myocardial infarction percutaneous coronary intervention following fibrinolytic administration

CDC on ST elevation myocardial infarction percutaneous coronary intervention following fibrinolytic administration

ST elevation myocardial infarction percutaneous coronary intervention following fibrinolytic administration in the news

Blogs on ST elevation myocardial infarction percutaneous coronary intervention following fibrinolytic administration

Directions to Hospitals Treating ST elevation myocardial infarction

Risk calculators and risk factors for ST elevation myocardial infarction percutaneous coronary intervention following fibrinolytic administration

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

A. Percutaneous Coronary Intervention After Failed Fibrinolysis

Mechanism of Benefit

Pharmacological reperfusion with full dose fibrinolysis is not uniformly successful in restoring antegrade flow in the infarct artery. In such situations, a strategy of prompt coronary angiography with intent to perform PCI is frequently contemplated. In certain patients, such as those with cardiogenic shock (especially those less than 75 years of age), severe congestive heart failure / pulmonary edema, or hemodynamically compromising ventricular arrhythmias (regardless of age), a strategy of coronary angiography with intent to perform PCI is a useful approach regardless of the time since initiation of fibrinolytic therapy,

In patients who do not exhibit the clinical instability noted above, PCI may also be reasonable if there is clinical suspicion of failure of fibrinolysis. This is referred to as rescue PCI. Critical to the success of rescue PCI is the initial clinical identification of patients who are suspected of having failed reperfusion with full dose fibrinolysis.

Clinical Trial Data

MERLIN (Middlesbrough Early Revascularization to Limit INfarction) (n=307), REACT (Rescue Angioplasty versus Conservative Treatment or Repeat Thrombolysis) (n=427), and 3 meta analyses have refocused attention on rescue PCI.[1][2][3][4] This subject has been studied with fewer than 1000 patients enrolled in randomized trials. In the period between trials studying rescue PCI, there was a transition between angiographic and electrocardiographic diagnosis to detect failed reperfusion.

Importantly, in the earlier studies, rescue PCI was performed in infarct arteries with TIMI 0/1 flow, often after a protocol-mandated 90 minute angiogram. In MERLIN and REACT, however, patients were randomized if they had less than 50% ST segment elevation resolution at 60 or 90 minutes, respectively. Many patients had patent infarct arteries on angiography; only 54% of patients in MERLIN and 74% of patients in REACT (which required less than TIMI grade 3 flow for PCI) actually underwent PCI. From a procedural standpoint, stents have replaced balloon angioplasty, antiplatelet therapy has improved with the addition of a thienopyridine agent and often a GP IIb/IIIa receptor antagonist, and procedural success rates are higher.

Despite these historical differences, recent data support the initial observation that rescue PCI decreases adverse clinical events compared with medical therapy. In the Wijeysundera meta-analysis[5], there was a trend toward reduced mortality rates with rescue PCI from 10.4% to 7.3% (RR 0.69 [95% confidence interval (CI) 0.46 to 1.05]; p=0.09), reduced reinfarction rates from 10.7% to 6.1% (RR 0.58 [95% CI 0.35 to 0.97]; p=0.04), and reduced heart failure rates from 17.8% to 12.7% (RR 0.73 [95% CI 0.54 to 1.00]; p=0.05). These event rates suggest that high-risk patients were selected for enrollment, so these data do not inform the clinical community about the role of rescue PCI in lower-risk patients. Also, the benefits of rescue PCI need to be balanced against the risk.

There was an excess occurrence of stroke in 2 trials (10 events vs. 2 events), but the majority of the strokes were thromboembolic rather than hemorrhagic, and the sample size was small, so more data are needed to define this risk. There also was an increase in absolute risk of bleeding of 13%, suggesting that adjustments in antithrombotic medication dosing are needed to improve safety. It should be noted that the majority of patients who underwent rescue PCI received fibrinolytic therapy with streptokinase.

Side Effects

ACC / AHA Guidelines- Immediate (or Emergency) Invasive Strategy and Rescue PCI (DO NOT EDIT)[6]

Class I

1. A strategy of coronary angiography with intent to perform PCI (or emergency CABG) is recommended for patients who have received fibrinolytic therapy and have any of the following:

a. Cardiogenic shock in patients less than 75 years who are suitable candidates for revascularization (Level of Evidence: B)
b. Severe congestive heart failure and/or pulmonary edema (Killip class III) (Level of Evidence: B)
c. Hemodynamically compromising ventricular arrhythmias (Level of Evidence: C)

Class IIa

1. A strategy of coronary angiography with intent to perform PCI (or emergency CABG) is reasonable in patients 75 years of age or older who have received fibrinolytic therapy, and are in cardiogenic shock, provided that they are suitable candidates for revascularization. (Level of Evidence: B)

2. It is reasonable to perform rescue PCI for patients with 1 or more of the following:

a. Hemodynamic or electrical instability. (Level of Evidence: C)
b. Persistent ischemic symptoms. (Level of Evidence: C)

3. A strategy of coronary angiography with intent to perform rescue PCI is reasonable for patients in whom fibrinolytic therapy has failed (ST segment elevation less than 50% resolved after 90 minutes following initiation of fibrinolytic therapy in the lead showing the worst initial elevation) and a moderate or large area of myocardium at risk (anterior MI, inferior MI with right ventricular involvement or precordial ST segment depression). (Level of Evidence: B)

Class III

1. A strategy of coronary angiography with intent to perform PCI (or emergency CABG) is not recommended in patients who have received fibrinolytic therapy if further invasive management is contraindicated or the patient or designee does not wish further invasive care. (Level of Evidence: C)

B. PCI after Successful Fibrinolysis or for Patients not undergoing Primary Reperfusion

ACC / AHA Guidelines- PCI After Successful Fibrinolysis or for Patients Not Undergoing Primary Reperfusion (Do Not Edit)[6]

Class IIb

1. PCI of a hemodynamically significant stenosis in a patent infarct artery greater than 24 hours after STEMI may be considered as part of an invasive strategy. (Level of Evidence: B)

Class III

1. PCI of a totally occluded infarct artery greater than 24 hours after STEMI is not recommended in asymptomatic patients with one or two-vessel disease if they are hemodynamically and electrically stable and do not have evidence of severe ischemia. (Level of Evidence: B)

Sources

  • The 2004 ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction [7]
  • The 2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients with ST-Elevation Myocardial Infarction [6]

Related Chapters

References

  1. Sutton AG, Campbell PG, Graham R; et al. (2004). "A randomized trial of rescue angioplasty versus a conservative approach for failed fibrinolysis in ST-segment elevation myocardial infarction: the Middlesbrough Early Revascularization to Limit INfarction (MERLIN) trial". J. Am. Coll. Cardiol. 44 (2): 287–96. doi:10.1016/j.jacc.2003.12.059. PMID 15261920. Unknown parameter |month= ignored (help)
  2. Gershlick AH, Stephens-Lloyd A, Hughes S; et al. (2005). "Rescue angioplasty after failed thrombolytic therapy for acute myocardial infarction". N. Engl. J. Med. 353 (26): 2758–68. doi:10.1056/NEJMoa050849. PMID 16382062. Unknown parameter |month= ignored (help)
  3. Patel TN, Bavry AA, Kumbhani DJ, Ellis SG (2006). "A meta-analysis of randomized trials of rescue percutaneous coronary intervention after failed fibrinolysis". Am. J. Cardiol. 97 (12): 1685–90. doi:10.1016/j.amjcard.2006.01.028. PMID 16765114. Unknown parameter |month= ignored (help)
  4. Collet JP, Montalescot G, Le May M, Borentain M, Gershlick A (2006). "Percutaneous coronary intervention after fibrinolysis: a multiple meta-analyses approach according to the type of strategy". J. Am. Coll. Cardiol. 48 (7): 1326–35. doi:10.1016/j.jacc.2006.03.064. PMID 17010790. Unknown parameter |month= ignored (help)
  5. Wijeysundera HC, Vijayaraghavan R, Nallamothu BK; et al. (2007). "Rescue angioplasty or repeat fibrinolysis after failed fibrinolytic therapy for ST-segment myocardial infarction: a meta-analysis of randomized trials". J. Am. Coll. Cardiol. 49 (4): 422–30. doi:10.1016/j.jacc.2006.09.033. PMID 17258087. Unknown parameter |month= ignored (help)
  6. 6.0 6.1 6.2 Antman EM, Hand M, Armstrong PW; et al. (2008). "2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: developed in collaboration With the Canadian Cardiovascular Society endorsed by the American Academy of Family Physicians: 2007 Writing Group to Review New Evidence and Update the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction, Writing on Behalf of the 2004 Writing Committee". Circulation. 117 (2): 296–329. doi:10.1161/CIRCULATIONAHA.107.188209. PMID 18071078. Unknown parameter |month= ignored (help)
  7. Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, Hochman JS, Krumholz HM, Kushner FG, Lamas GA, Mullany CJ, Ornato JP, Pearle DL, Sloan MA, Smith SC, Alpert JS, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Gregoratos G, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK (2004). "ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction)". Circulation. 110 (9): e82–292. PMID 15339869. Unknown parameter |month= ignored (help)


Template:WikiDoc Sources