Intravascular device related infections

Revision as of 21:45, 7 January 2009 by Zorkun (talk | contribs)
Jump to navigation Jump to search
Intravascular device related infections

WikiDoc Resources for Intravascular device related infections

Articles

Most recent articles on Intravascular device related infections

Most cited articles on Intravascular device related infections

Review articles on Intravascular device related infections

Articles on Intravascular device related infections in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Intravascular device related infections

Images of Intravascular device related infections

Photos of Intravascular device related infections

Podcasts & MP3s on Intravascular device related infections

Videos on Intravascular device related infections

Evidence Based Medicine

Cochrane Collaboration on Intravascular device related infections

Bandolier on Intravascular device related infections

TRIP on Intravascular device related infections

Clinical Trials

Ongoing Trials on Intravascular device related infections at Clinical Trials.gov

Trial results on Intravascular device related infections

Clinical Trials on Intravascular device related infections at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Intravascular device related infections

NICE Guidance on Intravascular device related infections

NHS PRODIGY Guidance

FDA on Intravascular device related infections

CDC on Intravascular device related infections

Books

Books on Intravascular device related infections

News

Intravascular device related infections in the news

Be alerted to news on Intravascular device related infections

News trends on Intravascular device related infections

Commentary

Blogs on Intravascular device related infections

Definitions

Definitions of Intravascular device related infections

Patient Resources / Community

Patient resources on Intravascular device related infections

Discussion groups on Intravascular device related infections

Patient Handouts on Intravascular device related infections

Directions to Hospitals Treating Intravascular device related infections

Risk calculators and risk factors for Intravascular device related infections

Healthcare Provider Resources

Symptoms of Intravascular device related infections

Causes & Risk Factors for Intravascular device related infections

Diagnostic studies for Intravascular device related infections

Treatment of Intravascular device related infections

Continuing Medical Education (CME)

CME Programs on Intravascular device related infections

International

Intravascular device related infections en Espanol

Intravascular device related infections en Francais

Business

Intravascular device related infections in the Marketplace

Patents on Intravascular device related infections

Experimental / Informatics

List of terms related to Intravascular device related infections

Intravascular catheters are indispensable in modern-day medical practice, particularly in intensive care units (ICUs). Although such catheters provide necessary vascular access, their use puts patients at risk for local and systemic infectious complications, including local site infection, catheter-related bloodstream infections (CRBSI), septic thrombophlebitis, endocarditis, and other metastatic infections (e.g., lung abscess, brain abscess, osteomyelitis, and endophthalmitis).

Health-care institutions purchase millions of intravascular catheters each year. The incidence of CRBSI varies considerably by type of catheter, frequency of catheter manipulation, and patient-related factors (e.g., underlying disease and acuity of illness). Peripheral venous catheters are the devices most frequently used for vascular access. Although the incidence of local or bloodstream infections (BSIs) associated with peripheral venous catheters is usually low, serious infectious complications produce considerable annual morbidity because of the frequency with which such catheters are used. However, the majority of serious catheter-related infections are associated with central venous catheters (CVCs), especially those that are placed in patients in ICUs.

In the ICU setting, the incidence of infection is often higher than in the less acute in-patient or ambulatory setting. In the ICU, central venous access might be needed for extended periods of time; patients can be colonized with hospital-acquired organisms; and the catheter can be manipulated multiple times per day for the administration of fluids, drugs, and blood products. Moreover, some catheters can be inserted in urgent situations, during which optimal attention to aseptic technique might not be feasible. Certain catheters (e.g., pulmonary artery catheters and peripheral arterial catheters) can be accessed multiple times per day for hemodynamic measurements or to obtain samples for laboratory analysis, augmenting the potential for contamination and subsequent clinical infection.

The magnitude of the potential for CVCs to cause morbidity and mortality resulting from infectious complications has been estimated in several studies [1]. In the United States, 15 million CVC days (i.e., the total number of days of exposure to CVCs by all patients in the selected population during the selected time period) occur in ICUs each year [2]. If the average rate of CVC-associated BSIs is 5.3 per 1,000 catheter days in the ICU [3], approximately 80,000 CVC-associated BSIs occur in ICUs each year in the United States. The attributable mortality for these BSIs has ranged from no increase in mortality in studies that controlled for severity of illness ([4] [5] [6]), to 35% increase in mortality in prospective studies that did not use this control ([7] [8]). Thus, the attributable mortality remains unclear. The attributable cost per infection is an estimated $34,508–$56,000 ([9] [10]), and the annual cost of caring for patients with CVC-associated BSIs ranges from $296 million to $2.3 billion [11].

A total of 250,000 cases of CVC-associated BSIs have been estimated to occur annually if entire hospitals are assessed rather than ICUs exclusively [12]. In this case, attributable mortality is an estimated 12%–25% for each infection, and the marginal cost to the health-care system is $25,000 per episode [13]. Therefore, by several analyses, the cost of CVC-associated BSI is substantial, both in terms of morbidity and in terms of financial resources expended. To improve patient outcome and reduce health-care costs, strategies should be implemented to reduce the incidence of these infections. This effort should be multidisciplinary, involving health-care professionals who insert and maintain intravascular catheters, health-care managers who allocate resources, and patients who are capable of assisting in the care of their catheters. Although several individual strategies have been studied and shown to be effective in reducing CRBSI, studies using multiple strategies have not been conducted. Thus, it is not known whether implementing multiple strategies will have an additive effect in reducing CRBSI, but it is logical to use multiple strategies concomitantly.


Template:SIB


Template:WikiDoc Sources

  1. (2)
  2. (2)
  3. (3)
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 5
  10. 9
  11. (10)
  12. (11)
  13. (11)