GSTM4: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Glutathione S-transferase Mu 4''' is an [[enzyme]] that in humans is encoded by the ''GSTM4'' [[gene]].<ref name="pmid8276420">{{cite journal |vauthors=Ross VL, Board PG, Webb GC | title = Chromosomal mapping of the human Mu class glutathione S-transferases to 1p13 | journal = Genomics | volume = 18 | issue = 1 | pages = 87–91 |date=Feb 1994 | pmid = 8276420 | pmc =  | doi = 10.1006/geno.1993.1429 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: GSTM4 glutathione S-transferase M4| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2948| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_GSTM4_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 4gtu.
| PDB = {{PDB2|4gtu}}
| Name = Glutathione S-transferase M4
| HGNCid = 4636
| Symbol = GSTM4
| AltSymbols =; GSTM4-4; GTM4; MGC131945; MGC9247
| OMIM = 138333
| ECnumber =
| Homologene = 37357
| MGIid = 95862
  | Function = {{GNF_GO|id=GO:0004364 |text = glutathione transferase activity}} {{GNF_GO|id=GO:0016740 |text = transferase activity}}
| Component =
| Process = {{GNF_GO|id=GO:0008152 |text = metabolic process}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 2948
    | Hs_Ensembl = 
    | Hs_RefseqProtein = NP_000841
    | Hs_RefseqmRNA = NM_000850
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 
    | Hs_GenLoc_start = 
    | Hs_GenLoc_end = 
    | Hs_Uniprot = 
    | Mm_EntrezGene = 14865
    | Mm_Ensembl = ENSMUSG00000027890
    | Mm_RefseqmRNA = NM_026764
    | Mm_RefseqProtein = NP_081040
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 3
    | Mm_GenLoc_start = 108168464
    | Mm_GenLoc_end = 108172844
    | Mm_Uniprot = 
  }}
}}
'''Glutathione S-transferase M4''', also known as '''GSTM4''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: GSTM4 glutathione S-transferase M4| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2948| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =  
| section_title =  
| summary_text = Cytosolic and membrane-bound forms of glutathione S-transferase are encoded by two distinct supergene families. At present, eight distinct classes of the soluble cytoplasmic mammalian glutathione S-transferases have been identified: alpha, kappa, mu, omega, pi, sigma, theta and zeta. This gene encodes a glutathione S-transferase that belongs to the mu class. The mu class of enzymes functions in the detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress, by conjugation with glutathione. The genes encoding the mu class of enzymes are organized in a gene cluster on chromosome 1p13.3 and are known to be highly polymorphic. These genetic variations can change an individual's susceptibility to carcinogens and toxins as well as affect the toxicity and efficacy of certain drugs. Diversification of these genes has occurred in regions encoding substrate-binding domains, as well as in tissue expression patterns, to accommodate an increasing number of foreign compounds. Multiple transcript variants, each encoding a distinct protein isoform, have been identified.<ref name="entrez">{{cite web | title = Entrez Gene: GSTM4 glutathione S-transferase M4| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2948| accessdate = }}</ref>
| summary_text = Cytosolic and membrane-bound forms of glutathione S-transferase are encoded by two distinct supergene families. At present, eight distinct classes of the soluble cytoplasmic mammalian glutathione S-transferases have been identified: alpha, kappa, mu, omega, pi, sigma, theta and zeta. This gene encodes a glutathione S-transferase that belongs to the mu class. The mu class of enzymes functions in the detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress, by conjugation with glutathione. The genes encoding the mu class of enzymes are organized in a gene cluster on chromosome 1p13.3 and are known to be highly polymorphic. These genetic variations can change an individual's susceptibility to carcinogens and toxins as well as affect the toxicity and efficacy of certain drugs. Diversification of these genes has occurred in regions encoding substrate-binding domains, as well as in tissue expression patterns, to accommodate an increasing number of foreign compounds. Multiple transcript variants, each encoding a distinct protein isoform, have been identified.<ref name="entrez" />
}}
}}
In the August 2009 issue of Oncogene journal, researchers at Huntsman Cancer Institute (HCI) at the University of Utah demonstrated that expression levels of GSTM4 could predict response to chemotherapy in patients with [[Ewing's Sarcoma]].  The study found that patients who did not respond to chemotherapy had high levels of GSTM4.<ref>{{cite web| url=http://www.oncogenetics.org/web/new-hope-for-deadly-childhood-bone-cancer | title=New hope for deadly childhood bone cancer | author=OncoGenetics.Org| publisher=OncoGenetics.Org| accessdate=2009-08-31|date=August 2009}} {{Dead link|date=October 2010|bot=H3llBot}}</ref>


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Bogaards JJ, van Ommen B, van Bladeren PJ |title=Purification and characterization of eight glutathione S-transferase isoenzymes of hamster. Comparison of subunit composition of enzymes from liver, kidney, testis, pancreas and trachea. |journal=Biochem. J. |volume=286 ( Pt 2) |issue=  |pages= 383-8 |year= 1992 |pmid= 1530570 |doi=  }}
*{{cite journal  |vauthors=Bogaards JJ, van Ommen B, van Bladeren PJ |title=Purification and characterization of eight glutathione S-transferase isoenzymes of hamster. Comparison of subunit composition of enzymes from liver, kidney, testis, pancreas and trachea |journal=Biochem. J. |volume=286 |issue=  2|pages= 383–8 |year= 1992 |pmid= 1530570 |doi= | pmc=1132909 }}
*{{cite journal  | author=Taylor JB, Oliver J, Sherrington R, Pemble SE |title=Structure of human glutathione S-transferase class Mu genes. |journal=Biochem. J. |volume=274 ( Pt 2) |issue=  |pages= 587-93 |year= 1991 |pmid= 2006920 |doi=  }}
*{{cite journal  |vauthors=Taylor JB, Oliver J, Sherrington R, Pemble SE |title=Structure of human glutathione S-transferase class Mu genes |journal=Biochem. J. |volume=274 |issue=  2|pages= 587–93 |year= 1991 |pmid= 2006920 |doi= | pmc=1150179 }}
*{{cite journal  | author=Seidegård J, Vorachek WR, Pero RW, Pearson WR |title=Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 19 |pages= 7293-7 |year= 1988 |pmid= 3174634 |doi=  }}
*{{cite journal  |vauthors=Seidegård J, Vorachek WR, Pero RW, Pearson WR |title=Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 19 |pages= 7293–7 |year= 1988 |pmid= 3174634 |doi=10.1073/pnas.85.19.7293  | pmc=282172 }}
*{{cite journal  | author=Comstock KE, Widersten M, Hao XY, ''et al.'' |title=A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human Mu class enzymes. |journal=Arch. Biochem. Biophys. |volume=311 |issue= 2 |pages= 487-95 |year= 1994 |pmid= 8203914 |doi= 10.1006/abbi.1994.1266 }}
*{{cite journal  | author=Comstock KE |title=A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human Mu class enzymes |journal=Arch. Biochem. Biophys. |volume=311 |issue= 2 |pages= 487–95 |year= 1994 |pmid= 8203914 |doi= 10.1006/abbi.1994.1266  |name-list-format=vanc| author2=Widersten M  | author3=Hao XY  | display-authors=| last4=Henner  | first4=WD  | last5=Mannervik  | first5=B }}
*{{cite journal | author=Ross VL, Board PG, Webb GC |title=Chromosomal mapping of the human Mu class glutathione S-transferases to 1p13. |journal=Genomics |volume=18 |issue= 1 |pages= 87-91 |year= 1994 |pmid= 8276420 |doi= 10.1006/geno.1993.1429 }}
*{{cite journal  | author=Rozell B |title=Glutathione transferases of classes alpha, mu and pi show selective expression in different regions of rat kidney |journal=Xenobiotica |volume=23 |issue= 8 |pages= 835–49 |year= 1994 |pmid= 8284940 |doi=10.3109/00498259309059412 |name-list-format=vanc| author2=Hansson HA | author3=Guthenberg C  | display-authors=3  | last4=Tahir  | first4=M. Kalim  | last5=Mannervik  | first5=B. }}
*{{cite journal  | author=Rozell B, Hansson HA, Guthenberg C, ''et al.'' |title=Glutathione transferases of classes alpha, mu and pi show selective expression in different regions of rat kidney. |journal=Xenobiotica |volume=23 |issue= 8 |pages= 835-49 |year= 1994 |pmid= 8284940 |doi=  }}
*{{cite journal  |vauthors=Comstock KE, Johnson KJ, Rifenbery D, Henner WD |title=Isolation and analysis of the gene and cDNA for a human Mu class glutathione S-transferase, GSTM4 |journal=J. Biol. Chem. |volume=268 |issue= 23 |pages= 16958–65 |year= 1993 |pmid= 8349586 |doi=  }}
*{{cite journal | author=Comstock KE, Johnson KJ, Rifenbery D, Henner WD |title=Isolation and analysis of the gene and cDNA for a human Mu class glutathione S-transferase, GSTM4. |journal=J. Biol. Chem. |volume=268 |issue= 23 |pages= 16958-65 |year= 1993 |pmid= 8349586 |doi=  }}
*{{cite journal  |vauthors=Ross VL, Board PG |title=Molecular cloning and heterologous expression of an alternatively spliced human Mu class glutathione S-transferase transcript |journal=Biochem. J. |volume=294 |issue=  2|pages= 373–80 |year= 1993 |pmid= 8373352 |doi= | pmc=1134464 }}
*{{cite journal  | author=Ross VL, Board PG |title=Molecular cloning and heterologous expression of an alternatively spliced human Mu class glutathione S-transferase transcript. |journal=Biochem. J. |volume=294 ( Pt 2) |issue= |pages= 373-80 |year= 1993 |pmid= 8373352 |doi=  }}
*{{cite journal  |vauthors=Zhong S, Spurr NK, Hayes JD, Wolf CR |title=Deduced amino acid sequence, gene structure and chromosomal location of a novel human class Mu glutathione S-transferase, GSTM4 |journal=Biochem. J. |volume=291 |issue= 1|pages= 41–50 |year= 1993 |pmid= 8471052 |doi= | pmc=1132478 }}
*{{cite journal  | author=Zhong S, Spurr NK, Hayes JD, Wolf CR |title=Deduced amino acid sequence, gene structure and chromosomal location of a novel human class Mu glutathione S-transferase, GSTM4. |journal=Biochem. J. |volume=291 ( Pt 1) |issue=  |pages= 41-50 |year= 1993 |pmid= 8471052 |doi=  }}
*{{cite journal  |vauthors=Patskovsky YV, Patskovska LN, Listowsky I |title=An asparagine-phenylalanine substitution accounts for catalytic differences between hGSTM3-3 and other human class mu glutathione S-transferases |journal=Biochemistry |volume=38 |issue= 49 |pages= 16187–94 |year= 2000 |pmid= 10587441 |doi=10.1021/bi991714t }}
*{{cite journal  | author=Patskovsky YV, Patskovska LN, Listowsky I |title=An asparagine-phenylalanine substitution accounts for catalytic differences between hGSTM3-3 and other human class mu glutathione S-transferases. |journal=Biochemistry |volume=38 |issue= 49 |pages= 16187-94 |year= 2000 |pmid= 10587441 |doi=  }}
*{{cite journal  |vauthors=Beuckmann CT, Fujimori K, Urade Y, Hayaishi O |title=Identification of mu-class glutathione transferases M2-2 and M3-3 as cytosolic prostaglandin E synthases in the human brain |journal=Neurochem. Res. |volume=25 |issue= 5 |pages= 733–8 |year= 2000 |pmid= 10905636 |doi=10.1023/A:1007579507804 }}
*{{cite journal  | author=Beuckmann CT, Fujimori K, Urade Y, Hayaishi O |title=Identification of mu-class glutathione transferases M2-2 and M3-3 as cytosolic prostaglandin E synthases in the human brain. |journal=Neurochem. Res. |volume=25 |issue= 5 |pages= 733-8 |year= 2000 |pmid= 10905636 |doi=  }}
*{{cite journal  | author=Liloglou T |title=A T2517C polymorphism in the GSTM4 gene is associated with risk of developing lung cancer |journal=Lung Cancer |volume=37 |issue= 2 |pages= 143–6 |year= 2003 |pmid= 12140136 |doi=10.1016/S0169-5002(02)00078-8 |name-list-format=vanc| author2=Walters M  | author3=Maloney P  | display-authors=3  | last4=Youngson  | first4=| last5=Field  | first5=JK  }}
*{{cite journal  | author=Liloglou T, Walters M, Maloney P, ''et al.'' |title=A T2517C polymorphism in the GSTM4 gene is associated with risk of developing lung cancer. |journal=Lung Cancer |volume=37 |issue= 2 |pages= 143-6 |year= 2003 |pmid= 12140136 |doi=  }}
*{{cite journal  | author=Strausberg RL |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899  | pmc=139241 |name-list-format=vanc| author2=Feingold EA  | author3=Grouse LH  | display-authors=3  | last4=Derge  | first4=JG  | last5=Klausner  | first5=RD  | last6=Collins  | first6=FS  | last7=Wagner  | first7=L  | last8=Shenmen  | first8=CM  | last9=Schuler  | first9=GD }}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | author=Gerhard DS |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504  | pmc=528928  |name-list-format=vanc| author2=Wagner L  | author3=Feingold EA  | display-authors=3  | last4=Shenmen  | first4=CM  | last5=Grouse  | first5=LH  | last6=Schuler  | first6=G  | last7=Klein  | first7=SL  | last8=Old  | first8=S  | last9=Rasooly  | first9=R }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | author=Stelzl U |title=A human protein-protein interaction network: a resource for annotating the proteome |journal=Cell |volume=122 |issue= 6 |pages= 957–68 |year= 2005 |pmid= 16169070 |doi= 10.1016/j.cell.2005.08.029  |name-list-format=vanc| author2=Worm U  | author3=Lalowski M  | display-authors=3  | last4=Haenig  | first4=Christian  | last5=Brembeck  | first5=Felix H.  | last6=Goehler  | first6=Heike  | last7=Stroedicke  | first7=Martin  | last8=Zenkner  | first8=Martina  | last9=Schoenherr  | first9=Anke }}
*{{cite journal  | author=Stelzl U, Worm U, Lalowski M, ''et al.'' |title=A human protein-protein interaction network: a resource for annotating the proteome. |journal=Cell |volume=122 |issue= 6 |pages= 957-68 |year= 2005 |pmid= 16169070 |doi= 10.1016/j.cell.2005.08.029 }}
*{{cite journal  | author=Rual JF |title=Towards a proteome-scale map of the human protein-protein interaction network |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209  |name-list-format=vanc| author2=Venkatesan K  | author3=Hao T  | display-authors=3  | last4=Hirozane-Kishikawa  | first4=Tomoko  | last5=Dricot  | first5=Amélie  | last6=Li  | first6=Ning  | last7=Berriz  | first7=Gabriel F.  | last8=Gibbons  | first8=Francis D.  | last9=Dreze  | first9=Matija }}
*{{cite journal | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173-8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
*{{cite journal  | author=Denson J |title=Screening for inter-individual splicing differences in human GSTM4 and the discovery of a single nucleotide substitution related to the tandem skipping of two exons |journal=Gene |volume=379 |issue=  |pages= 148–55 |year= 2006 |pmid= 16854533 |doi= 10.1016/j.gene.2006.05.012  |name-list-format=vanc| author2=Xi Z  | author3=Wu Y  | display-authors=3  | last4=Yang  | first4=Wenjian  | last5=Neale  | first5=Geoffrey  | last6=Zhang | first6=Jiong }}
*{{cite journal  | author=Denson J, Xi Z, Wu Y, ''et al.'' |title=Screening for inter-individual splicing differences in human GSTM4 and the discovery of a single nucleotide substitution related to the tandem skipping of two exons. |journal=Gene |volume=379 |issue=  |pages= 148-55 |year= 2006 |pmid= 16854533 |doi= 10.1016/j.gene.2006.05.012 }}
}}
}}
{{refend}}
{{refend}}
{{PDB Gallery|geneid=2948}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


{{protein-stub}}
{{protein-stub}}
{{WikiDoc Sources}}

Latest revision as of 09:07, 31 August 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Glutathione S-transferase Mu 4 is an enzyme that in humans is encoded by the GSTM4 gene.[1][2]

Cytosolic and membrane-bound forms of glutathione S-transferase are encoded by two distinct supergene families. At present, eight distinct classes of the soluble cytoplasmic mammalian glutathione S-transferases have been identified: alpha, kappa, mu, omega, pi, sigma, theta and zeta. This gene encodes a glutathione S-transferase that belongs to the mu class. The mu class of enzymes functions in the detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress, by conjugation with glutathione. The genes encoding the mu class of enzymes are organized in a gene cluster on chromosome 1p13.3 and are known to be highly polymorphic. These genetic variations can change an individual's susceptibility to carcinogens and toxins as well as affect the toxicity and efficacy of certain drugs. Diversification of these genes has occurred in regions encoding substrate-binding domains, as well as in tissue expression patterns, to accommodate an increasing number of foreign compounds. Multiple transcript variants, each encoding a distinct protein isoform, have been identified.[2]

In the August 2009 issue of Oncogene journal, researchers at Huntsman Cancer Institute (HCI) at the University of Utah demonstrated that expression levels of GSTM4 could predict response to chemotherapy in patients with Ewing's Sarcoma. The study found that patients who did not respond to chemotherapy had high levels of GSTM4.[3]

References

  1. Ross VL, Board PG, Webb GC (Feb 1994). "Chromosomal mapping of the human Mu class glutathione S-transferases to 1p13". Genomics. 18 (1): 87–91. doi:10.1006/geno.1993.1429. PMID 8276420.
  2. 2.0 2.1 "Entrez Gene: GSTM4 glutathione S-transferase M4".
  3. OncoGenetics.Org (August 2009). "New hope for deadly childhood bone cancer". OncoGenetics.Org. Retrieved 2009-08-31.[dead link]

Further reading