Eukaryotic release factors: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
imported>Shellwood
m (Reverted edits by 2401:4900:35F1:97C:B375:A12B:1508:E2DA (talk) (HG) (3.4.6))
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{protein
{{Infobox_gene}}
|Name=eukaryotic translation termination factor 1
'''Eukaryotic translation termination factor 1''' (eRF1), also known as'''TB3-1''', is a [[protein]] that in humans is encoded by the ''ETF1'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: eukaryotic translation termination factor 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2107| accessdate = }}</ref><ref name="pmid1546371">{{cite journal | vauthors = Grenett HE, Eipers PG, Kidd VJ, Bounelis P, Fuller GM | title = Chromosomal localization of a human cDNA containing a DIDS binding domain and demonstrating high homology to yeast omnipotent suppressor 45 | journal = Somat. Cell Mol. Genet. | volume = 18 | issue = 1 | pages = 97–102 | date = January 1992 | pmid = 1546371 | doi = 10.1007/BF01233452 | url = | issn = }}</ref><ref name="pmid7990965">{{cite journal | vauthors = Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M | title = A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor | journal = Nature | volume = 372 | issue = 6507 | pages = 701–3 | date = December 1994 | pmid = 7990965 | doi = 10.1038/372701a0 | url =  | issn =  }}</ref>
|caption=
|image=
|width=
|HGNCid=3477
|Symbol=ETF1
|AltSymbols=SUP45L1, ERF1, ERF
|EntrezGene=2107
|OMIM=600285
|RefSeq=NM_004730
|UniProt=Q96CG1
|PDB=
|ECnumber=
|Chromosome=5
|Arm=q
|Band=31.2
|LocusSupplementaryData=
}}
In [[eukaryotes]], there is only one release factor, eRF, which recognizes all three [[stop codon]]s in place of RF1, RF2, or RF3.  However, the overall process of termination is similar to that of prokaryotes <ref name="review">{{cite web|url=http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=140092&tools=bot|accessdate=2006-11-28|title=Termination of translation: interplay of mRNA, rRNAs and release factors?.}}</ref>.


==References==
In [[eukaryotes]], this is the only '''release factor''' (eRF) which recognizes all three [[stop codon]]s. The overall process of termination is similar in prokaryotes, but in the latter 3 separate release factors exist, RF1, RF2 and RF3.<ref name="pmid12514123">{{cite journal | vauthors = Kisselev L, Ehrenberg M, Frolova L | title = Termination of translation: interplay of mRNA, rRNAs and release factors? | journal = EMBO J. | volume = 22 | issue = 2 | pages = 175–82 | date = January 2003 | pmid = 12514123 | pmc = 140092 | doi = 10.1093/emboj/cdg017 | url =  | issn =  }}</ref>
{{reflist|2}}


==External links==
== Function ==
 
Termination of protein biosynthesis and release of the nascent polypeptide chain are signaled by the presence of an in-frame stop codon at the aminoacyl site of the ribosome. The process of translation termination is universal and is mediated by protein release factors (RFs) and GTP. A class 1 RF recognizes the stop codon and promotes the hydrolysis of the ester bond linking the polypeptide chain with the peptidyl site tRNA, a reaction catalyzed at the peptidyl transferase center of the ribosome. Class 2 RFs, which are not codon specific and do not recognize codons, stimulate class 1 RF activity and confer GTP dependency upon the process. In prokaryotes, both class 1 RFs, RF1 and RF2, recognize UAA; however, UAG and UGA are decoded specifically by RF1 and RF2, respectively. In eukaryotes, eRF1, or ETF1, the functional counterpart of RF1 and RF2, functions as an omnipotent RF, decoding all 3 stop codons.<ref name="entrez"/><ref name="pmid7990965"/>
 
== References ==
{{Reflist}}
{{Clear}}
 
== Further reading ==
{{refbegin | 2}}
* {{cite journal | vauthors = Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, Ohno M, Dreyfuss G, Ohno S | title = Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay | journal = Genes Dev. | volume = 20 | issue = 3 | pages = 355–67 | year = 2006 | pmid = 16452507 | pmc = 1361706 | doi = 10.1101/gad.1389006 }}
* {{cite journal | vauthors = Chavatte L, Seit-Nebi A, Dubovaya V, Favre A | title = The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome | journal = EMBO J. | volume = 21 | issue = 19 | pages = 5302–11 | year = 2002 | pmid = 12356746 | pmc = 129024 | doi = 10.1093/emboj/cdf484 }}
* {{cite journal | vauthors = Janzen DM, Geballe AP | title = The effect of eukaryotic release factor depletion on translation termination in human cell lines | journal = Nucleic Acids Res. | volume = 32 | issue = 15 | pages = 4491–502 | year = 2004 | pmid = 15326224 | pmc = 516063 | doi = 10.1093/nar/gkh791 }}
* {{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | year = 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }}
* {{cite journal | vauthors = Ivanova EV, Alkalaeva EZ, Birsdall B, Kolosov PM, Pol'shakov VI, Kiselev LL | title = [Interface of the interaction of the middle domain of human translation termination factor eRF1 with eukaryotic ribosomes] | journal = Mol. Biol. (Mosk.) | volume = 42 | issue = 6 | pages = 1056–66 | year = 2008 | pmid = 19140327 | doi =  }}
* {{cite journal | vauthors = Hauryliuk V, Zavialov A, Kisselev L, Ehrenberg M | title = Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3 | journal = Biochimie | volume = 88 | issue = 7 | pages = 747–57 | year = 2006 | pmid = 16797113 | doi = 10.1016/j.biochi.2006.06.001 }}
* {{cite journal | vauthors = Inge-Vechtomov S, Zhouravleva G, Philippe M | title = Eukaryotic release factors (eRFs) history | journal = Biol. Cell | volume = 95 | issue = 3–4 | pages = 195–209 | year = 2003 | pmid = 12867083 | doi = 10.1016/S0248-4900(03)00035-2 }}
* {{cite journal | vauthors = Andér M, Aqvist J | title = Does glutamine methylation affect the intrinsic conformation of the universally conserved GGQ motif in ribosomal release factors? | journal = Biochemistry | volume = 48 | issue = 15 | pages = 3483–9 | year = 2009 | pmid = 19265422 | doi = 10.1021/bi900117r }}
* {{cite journal | vauthors = Kobayashi Y, Zhuang J, Peltz S, Dougherty J | title = Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting | journal = J. Biol. Chem. | volume = 285 | issue = 26 | pages = 19776–84 | year = 2010 | pmid = 20418372 | pmc = 2888388 | doi = 10.1074/jbc.M109.085621 }}
* {{cite journal | vauthors = Sowa ME, Bennett EJ, Gygi SP, Harper JW | title = Defining the human deubiquitinating enzyme interaction landscape | journal = Cell | volume = 138 | issue = 2 | pages = 389–403 | year = 2009 | pmid = 19615732 | pmc = 2716422 | doi = 10.1016/j.cell.2009.04.042 }}
* {{cite journal | vauthors = Ilegems E, Pick HM, Vogel H | title = Downregulation of eRF1 by RNA interference increases mis-acylated tRNA suppression efficiency in human cells | journal = Protein Eng. Des. Sel. | volume = 17 | issue = 12 | pages = 821–7 | year = 2004 | pmid = 15716307 | doi = 10.1093/protein/gzh096 }}
* {{cite journal | vauthors = Kolosov P, Frolova L, Seit-Nebi A, Dubovaya V, Kononenko A, Oparina N, Justesen J, Efimov A, Kisselev L | title = Invariant amino acids essential for decoding function of polypeptide release factor eRF1 | journal = Nucleic Acids Res. | volume = 33 | issue = 19 | pages = 6418–25 | year = 2005 | pmid = 16282590 | pmc = 1283522 | doi = 10.1093/nar/gki927 }}
* {{cite journal | vauthors = Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M | title = Nucleolar proteome dynamics | journal = Nature | volume = 433 | issue = 7021 | pages = 77–83 | year = 2005 | pmid = 15635413 | doi = 10.1038/nature03207 }}
* {{cite journal | vauthors = Figaro S, Scrima N, Buckingham RH, Heurgué-Hamard V | title = HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1 | journal = FEBS Lett. | volume = 582 | issue = 16 | pages = 2352–6 | year = 2008 | pmid = 18539146 | doi = 10.1016/j.febslet.2008.05.045 }}
* {{cite journal | vauthors = Chavatte L, Frolova L, Laugâa P, Kisselev L, Favre A | title = Stop codons and UGG promote efficient binding of the polypeptide release factor eRF1 to the ribosomal A site | journal = J. Mol. Biol. | volume = 331 | issue = 4 | pages = 745–58 | year = 2003 | pmid = 12909007 | doi = 10.1016/S0022-2836(03)00813-1 }}
* {{cite journal | vauthors = Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, Görlich D | title = Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm | journal = EMBO J. | volume = 21 | issue = 22 | pages = 6205–15 | year = 2002 | pmid = 12426392 | pmc = 137205 | doi = 10.1093/emboj/cdf613 }}
* {{cite journal | vauthors = Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J | title = Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides | journal = Nat. Biotechnol. | volume = 21 | issue = 5 | pages = 566–9 | year = 2003 | pmid = 12665801 | doi = 10.1038/nbt810 }}
* {{cite journal | vauthors = Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I, Tsujimoto M, Suzuki T, Katada T, Hoshino S | title = Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases | journal = Genes Dev. | volume = 21 | issue = 23 | pages = 3135–48 | year = 2007 | pmid = 18056425 | pmc = 2081979 | doi = 10.1101/gad.1597707 }}
* {{cite journal | vauthors = Ivanova EV, Kolosov PM, Birdsall B, Kelly G, Pastore A, Kisselev LL, Polshakov VI | title = Eukaryotic class-1 translation termination factor eRF1: the NMR structure of the middle domain involved in triggering ribosome-dependent peptidyl-tRNA hydrolysis | journal = FEBS Journal | volume = 274 | issue = 16 | pages = 4223–37 | year = 2007 | pmid = 17651434 | doi = 10.1111/j.1742-4658.2007.05949.x}}
* {{cite journal | vauthors = Mantsyzov AB, Ivanova EV, Birdsall B, Alkalaeva EZ, Kryuchkova PN, Kelly G, Frolova LY, Polshakov VI | title = NMR Solution Structure and Function of the C-terminal Domain of Eukaryotic Polypeptide Release Factor eRF1 | journal = FEBS Journal | volume = 277 | issue = 12 | pages = 2611–27 | year = 2010 | pmid = 20553496 | pmc = 2984548 | doi = 10.1111/j.1742-4658.2010.07672.x }}
{{refend}}
 
== External links ==
* {{MeshName|Termination+Release+Factor}}
* {{MeshName|Termination+Release+Factor}}


{{protein-stub}}
{{NLM content}}
 
{{GeneticTranslation}}
{{GeneticTranslation}}
[[Category:Proteins]]
[[Category:Proteins]]
{{gene-5-stub}}

Latest revision as of 14:56, 23 December 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Eukaryotic translation termination factor 1 (eRF1), also known asTB3-1, is a protein that in humans is encoded by the ETF1 gene.[1][2][3]

In eukaryotes, this is the only release factor (eRF) which recognizes all three stop codons. The overall process of termination is similar in prokaryotes, but in the latter 3 separate release factors exist, RF1, RF2 and RF3.[4]

Function

Termination of protein biosynthesis and release of the nascent polypeptide chain are signaled by the presence of an in-frame stop codon at the aminoacyl site of the ribosome. The process of translation termination is universal and is mediated by protein release factors (RFs) and GTP. A class 1 RF recognizes the stop codon and promotes the hydrolysis of the ester bond linking the polypeptide chain with the peptidyl site tRNA, a reaction catalyzed at the peptidyl transferase center of the ribosome. Class 2 RFs, which are not codon specific and do not recognize codons, stimulate class 1 RF activity and confer GTP dependency upon the process. In prokaryotes, both class 1 RFs, RF1 and RF2, recognize UAA; however, UAG and UGA are decoded specifically by RF1 and RF2, respectively. In eukaryotes, eRF1, or ETF1, the functional counterpart of RF1 and RF2, functions as an omnipotent RF, decoding all 3 stop codons.[1][3]

References

  1. 1.0 1.1 "Entrez Gene: eukaryotic translation termination factor 1".
  2. Grenett HE, Eipers PG, Kidd VJ, Bounelis P, Fuller GM (January 1992). "Chromosomal localization of a human cDNA containing a DIDS binding domain and demonstrating high homology to yeast omnipotent suppressor 45". Somat. Cell Mol. Genet. 18 (1): 97–102. doi:10.1007/BF01233452. PMID 1546371.
  3. 3.0 3.1 Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M (December 1994). "A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor". Nature. 372 (6507): 701–3. doi:10.1038/372701a0. PMID 7990965.
  4. Kisselev L, Ehrenberg M, Frolova L (January 2003). "Termination of translation: interplay of mRNA, rRNAs and release factors?". EMBO J. 22 (2): 175–82. doi:10.1093/emboj/cdg017. PMC 140092. PMID 12514123.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.