Translation initiation is mediated by specific recognition of the cap structure by eukaryotic translation initiation factor 4F (eIF4F), which is a cap binding protein complex that consists of three subunits: eIF4A, eIF4E and eIF4G. The protein encoded by the eIF4G2 gene shares similarity with the C-terminal region of eIF4G1 that contains the binding sites for eIF4A and eIF3. eIF4G2 additionally contains a binding site for eIF4E at the N-terminus. Unlike eIF4G1, which supports cap-dependent and independent translation, the eIF4G2 gene product functions as a general repressor of translation by forming translationally inactive complexes. In vitro and in vivo studies indicate that translation of this mRNA initiates exclusively at a non-AUG (GUG) codon. Alternatively spliced transcript variants encoding different isoforms of this gene have been described.[3]
↑Yamanaka S, Poksay KS, Arnold KS, Innerarity TL (March 1997). "A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme". Genes Dev. 11 (3): 321–33. doi:10.1101/gad.11.3.321. PMID9030685.
Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID8125298.
Shaughnessy JD, Jenkins NA, Copeland NG (1997). "cDNA cloning, expression analysis, and chromosomal localization of a gene with high homology to wheat eIF-(iso)4F and mammalian eIF-4G". Genomics. 39 (2): 192–7. doi:10.1006/geno.1996.4502. PMID9027506.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID9373149.
Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999). "Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G". Mol. Cell. 3 (6): 707–16. doi:10.1016/S1097-2765(01)80003-4. PMID10394359.
Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU, Burley SK (2001). "A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery". Mol. Cell. 7 (1): 193–203. doi:10.1016/S1097-2765(01)00167-8. PMID11172724.
Marissen WE, Gradi A, Sonenberg N, Lloyd RE (2000). "Cleavage of eukaryotic translation initiation factor 4GII correlates with translation inhibition during apoptosis". Cell Death Differ. 7 (12): 1234–43. doi:10.1038/sj.cdd.4400750. PMID11175261.
Perales C, Carrasco L, Ventoso I (2003). "Cleavage of eIF4G by HIV-1 protease: effects on translation". FEBS Lett. 533 (1–3): 89–94. doi:10.1016/S0014-5793(02)03764-X. PMID12505164.
Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J (2003). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides". Nat. Biotechnol. 21 (5): 566–9. doi:10.1038/nbt810. PMID12665801.
Li Z, Hu CY, Mo BQ, Xu JD, Zhao Y (2003). "[Effect of beta-carotene on gene expression of breast cancer cells]". Ai Zheng. 22 (4): 380–4. PMID12703993.
Qin H, Raught B, Sonenberg N, Goldstein EG, Edelman AM (2003). "Phosphorylation screening identifies translational initiation factor 4GII as an intracellular target of Ca(2+)/calmodulin-dependent protein kinase I". J. Biol. Chem. 278 (49): 48570–9. doi:10.1074/jbc.M308781200. PMID14507913.