Coronavirus historical perspective: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 14: Line 14:
* Prior to the SARS epidemic, two coronaviruses (HCoV-OC43 and HCoV-229E) were recognized to be responsible for causing upper respiratory tract infections with more severe outcomes in the elderly and the immunocompromised.<ref name="pmid16983613">{{cite journal |vauthors=Garbino J, Crespo S, Aubert JD, Rochat T, Ninet B, Deffernez C, Wunderli W, Pache JC, Soccal PM, Kaiser L |title=A prospective hospital-based study of the clinical impact of non-severe acute respiratory syndrome (Non-SARS)-related human coronavirus infection |journal=Clin. Infect. Dis. |volume=43 |issue=8 |pages=1009–15 |date=October 2006 |pmid=16983613 |doi=10.1086/507898 |url=}}</ref>
* Prior to the SARS epidemic, two coronaviruses (HCoV-OC43 and HCoV-229E) were recognized to be responsible for causing upper respiratory tract infections with more severe outcomes in the elderly and the immunocompromised.<ref name="pmid16983613">{{cite journal |vauthors=Garbino J, Crespo S, Aubert JD, Rochat T, Ninet B, Deffernez C, Wunderli W, Pache JC, Soccal PM, Kaiser L |title=A prospective hospital-based study of the clinical impact of non-severe acute respiratory syndrome (Non-SARS)-related human coronavirus infection |journal=Clin. Infect. Dis. |volume=43 |issue=8 |pages=1009–15 |date=October 2006 |pmid=16983613 |doi=10.1086/507898 |url=}}</ref>
* SARS-CoV however, not only caused severe respiratory illness with a mortality rate of 10% during the 2002 - 2003 epidemic but it also caused systemic disease affecting other organs and tissues.<ref name="pmid15577937">{{cite journal |vauthors=Peiris JS, Guan Y, Yuen KY |title=Severe acute respiratory syndrome |journal=Nat. Med. |volume=10 |issue=12 Suppl |pages=S88–97 |date=December 2004 |pmid=15577937 |doi=10.1038/nm1143 |url=}}</ref><ref name="pmid16043521">{{cite journal |vauthors=Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS |title=Multiple organ infection and the pathogenesis of SARS |journal=J. Exp. Med. |volume=202 |issue=3 |pages=415–24 |date=August 2005 |pmid=16043521 |pmc=2213088 |doi=10.1084/jem.20050828 |url=}}</ref>
* SARS-CoV however, not only caused severe respiratory illness with a mortality rate of 10% during the 2002 - 2003 epidemic but it also caused systemic disease affecting other organs and tissues.<ref name="pmid15577937">{{cite journal |vauthors=Peiris JS, Guan Y, Yuen KY |title=Severe acute respiratory syndrome |journal=Nat. Med. |volume=10 |issue=12 Suppl |pages=S88–97 |date=December 2004 |pmid=15577937 |doi=10.1038/nm1143 |url=}}</ref><ref name="pmid16043521">{{cite journal |vauthors=Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS |title=Multiple organ infection and the pathogenesis of SARS |journal=J. Exp. Med. |volume=202 |issue=3 |pages=415–24 |date=August 2005 |pmid=16043521 |pmc=2213088 |doi=10.1084/jem.20050828 |url=}}</ref>
* The recognition of SARS led the search for other pathogenic coronaviruses and  
* The recognition of SARS led the search for other pathogenic coronaviruses, which culminated in the discovery of HCoV-NL63 and HCoV-HKU1.
 
==References==
==References==
{{reflist|2}}
{{reflist|2}}

Revision as of 20:00, 30 January 2020

Coronavirus Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Differentiating Coronavirus from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

X-ray

Electrocardiogram

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Case Studies

Case #1

Coronavirus historical perspective On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Coronavirus historical perspective

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Coronavirus historical perspective

CDC on Coronavirus historical perspective

Coronavirus historical perspective in the news

Blogs on Coronavirus historical perspective

Directions to Hospitals Treating Coronavirus

Risk calculators and risk factors for Coronavirus historical perspective

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sabawoon Mirwais, M.B.B.S, M.D.[2], Aditya Govindavarjhulla, M.B.B.S. [3]

Overview

Coronaviruses were first isolated from chickens in 1937. In 1965, Tyrrell and Bynoe used cultures of human ciliated embryonal trachea to propagate the first human coronavirus (HCoV) in vitro. There are now approximately 15 species in this family, which infect not only man but cattle, pigs, rodents, cats, dogs and birds (some are serious veterinary pathogens, especially chickens).

Historical Perspective

  • Coronaviruses were first isolated from chickens in 1937.
  • In 1965, Tyrrell and Bynoe used cultures of human ciliated embryonal trachea to propagate the first human coronavirus (HCoV) in vitro.
  • There are now approximately 15 species in this family, which infect not only man but cattle, pigs, rodents, cats, dogs and birds (some are serious veterinary pathogens, especially chickens).[1]
  • The virus gained international popularity after the deadly SARS epidemic caused by SARS-CoV in 2002 - 2003.
  • Prior to the SARS epidemic, two coronaviruses (HCoV-OC43 and HCoV-229E) were recognized to be responsible for causing upper respiratory tract infections with more severe outcomes in the elderly and the immunocompromised.[2]
  • SARS-CoV however, not only caused severe respiratory illness with a mortality rate of 10% during the 2002 - 2003 epidemic but it also caused systemic disease affecting other organs and tissues.[3][4]
  • The recognition of SARS led the search for other pathogenic coronaviruses, which culminated in the discovery of HCoV-NL63 and HCoV-HKU1.

References

  1. "Coronavirus - MicrobeWiki". Retrieved 2012-12-28.
  2. Garbino J, Crespo S, Aubert JD, Rochat T, Ninet B, Deffernez C, Wunderli W, Pache JC, Soccal PM, Kaiser L (October 2006). "A prospective hospital-based study of the clinical impact of non-severe acute respiratory syndrome (Non-SARS)-related human coronavirus infection". Clin. Infect. Dis. 43 (8): 1009–15. doi:10.1086/507898. PMID 16983613.
  3. Peiris JS, Guan Y, Yuen KY (December 2004). "Severe acute respiratory syndrome". Nat. Med. 10 (12 Suppl): S88–97. doi:10.1038/nm1143. PMID 15577937.
  4. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS (August 2005). "Multiple organ infection and the pathogenesis of SARS". J. Exp. Med. 202 (3): 415–24. doi:10.1084/jem.20050828. PMC 2213088. PMID 16043521.

Template:WH Template:WS