Cirrhosis pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 32: Line 32:
** '''[[Primary sclerosing cholangitis]]:'''  PSC is a progressive cholestatic disorder presenting with [[pruritus]], [[steatorrhea]], fat soluble vitamin deficiencies, and [[metabolic bone disease]]. There is a strong association with [[inflammatory bowel disease]] (IBD), especially [[ulcerative colitis]].
** '''[[Primary sclerosing cholangitis]]:'''  PSC is a progressive cholestatic disorder presenting with [[pruritus]], [[steatorrhea]], fat soluble vitamin deficiencies, and [[metabolic bone disease]]. There is a strong association with [[inflammatory bowel disease]] (IBD), especially [[ulcerative colitis]].
** '''[[Autoimmune hepatitis]]''':  This disease is caused by the immunologic damage to the liver causing [[inflammation]] and eventually scarring and cirrhosis.
** '''[[Autoimmune hepatitis]]''':  This disease is caused by the immunologic damage to the liver causing [[inflammation]] and eventually scarring and cirrhosis.
===Genetics===
* Certain TERT gene variant resulting in reduced telomerase activity has been found to be risk factor for sporadic cirrhosis<ref>{{cite journal |author=Calado RT, Brudno J, Mehta P, ''et al.'' |title=Constitutional telomerase mutations are genetic risk factors for cirrhosis |journal=Hepatology |volume=53 |issue=5 |pages=1600–7 |year=2011 |month=May |pmid=21520173 |pmc=3082730 |doi=10.1002/hep.24173 |url=}}</ref>
* An uncharacterised nucleolar protein, NOL11 has a role in the pathogenesis of North American Indian childhood cirrhosis<ref>{{cite journal |author=Freed EF, Prieto JL, McCann KL, McStay B, Baserga SJ |title=NOL11, Implicated in the Pathogenesis of North American Indian Childhood Cirrhosis, Is Required for Pre-rRNA Transcription and Processing |journal=PLoS Genet. |volume=8 |issue=8 |pages=e1002892 |year=2012 |month=August |pmid=22916032 |pmc=3420923 |doi=10.1371/journal.pgen.1002892 |url=}}</ref>
* Loss of interaction between C-terminus of Utp4/cirhin and other SSU processome protein may cause North American Indian childhood cirrhosis<ref>{{cite journal |author=Freed EF, Baserga SJ |title=The C-terminus of Utp4, mutated in childhood cirrhosis, is essential for ribosome biogenesis |journal=Nucleic Acids Res. |volume=38 |issue=14 |pages=4798–806 |year=2010 |month=August |pmid=20385600 |pmc=2919705 |doi=10.1093/nar/gkq185 |url=}}</ref>


===Gross Pathology===
===Gross Pathology===
Macroscopically, the liver may be initially enlarged, but with progression of the disease, it becomes smaller. Its surface is irregular, the consistency is firm and the color is often yellow (if associates [[steatosis]]). Depending on the size of the nodules there are three macroscopic types: micronodular, macronodular and mixed cirrhosis.
Macroscopically, the liver may be initially enlarged, but with progression of the disease, it becomes smaller. Its surface is irregular, the consistency is firm and the color is often yellow (if associates [[steatosis]]). Depending on the size of the nodules there are three macroscopic types: micronodular, macronodular and mixed cirrhosis.
* In micronodular form ([[René Laennec|Laennec]]'s cirrhosis or portal cirrhosis) regenerating nodules are under 3 mm.
* In micronodular form ([[René Laennec|Laennec]]'s cirrhosis or portal cirrhosis) regenerating nodules are under 3 mm.
* In macronodular cirrhosis (post-necrotic cirrhosis), the nodules are larger than 3 mm.
* In macronodular cirrhosis (post-necrotic cirrhosis), the nodules are larger than 3 mm.
* The mixed cirrhosis consists in a variety of nodules with different sizes.
* The mixed cirrhosis consists in a variety of nodules with different sizes.
[http://www.peir.net Images courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology]
[http://www.peir.net Images courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology]
<gallery>
<gallery>
Image:Cirrhosis 001.jpg|Cirrhosis: Gross, external view of micronodular cirrhosis   
Image:Cirrhosis 001.jpg|Cirrhosis: Gross, external view of micronodular cirrhosis   
Line 48: Line 52:
Image:Cirrhosis 004.jpg|Macronodular cirrhosis and hepatoma  
Image:Cirrhosis 004.jpg|Macronodular cirrhosis and hepatoma  
</gallery>
</gallery>


<gallery>
<gallery>
Line 56: Line 59:
Image:Cirrhosis 008.jpg|Micronodular cirrhosis: Gross, external view (an excellent example)
Image:Cirrhosis 008.jpg|Micronodular cirrhosis: Gross, external view (an excellent example)
</gallery>
</gallery>


<gallery>
<gallery>
Line 64: Line 66:
Image:Cirrhosis 012.jpg|Cirrhosis with portocaval shunt: Gross, severe cirrhosis with extensive liver necrosis due to thrombosis of portocaval shunt (well shown)
Image:Cirrhosis 012.jpg|Cirrhosis with portocaval shunt: Gross, severe cirrhosis with extensive liver necrosis due to thrombosis of portocaval shunt (well shown)
</gallery>
</gallery>


<gallery>
<gallery>
Line 73: Line 73:
Image:Cirrhosis 016.jpg|Macronodular cirrhosis: Gross, natural color, external view of liver and very enlarged spleen (liver has variable size nodules up to about 2 cm)  
Image:Cirrhosis 016.jpg|Macronodular cirrhosis: Gross, natural color, external view of liver and very enlarged spleen (liver has variable size nodules up to about 2 cm)  
</gallery>
</gallery>


<gallery>
<gallery>
Line 82: Line 80:
Image:Cirrhosis 020.jpg|Fatty change and early cirrhosis: Gross, natural color, rather close-up image showing typical fatty color, and in lighting at lower right of micrography micronodularity is evident (quite good example)
Image:Cirrhosis 020.jpg|Fatty change and early cirrhosis: Gross, natural color, rather close-up image showing typical fatty color, and in lighting at lower right of micrography micronodularity is evident (quite good example)
</gallery>
</gallery>


<gallery>
<gallery>
Line 91: Line 87:
Image:Cirrhosis 024.jpg|Micronodular cirrhosis: Gross, natural color, view of whole liver showing external surface typical cirrhotic liver (history of alcoholism)  
Image:Cirrhosis 024.jpg|Micronodular cirrhosis: Gross, natural color, view of whole liver showing external surface typical cirrhotic liver (history of alcoholism)  
</gallery>
</gallery>


<gallery>
<gallery>
Line 100: Line 94:
Image:Cirrhosis 028.jpg|Portal Vein Thrombosis with cirrhosis: Gross, close-up, micronodular cirrhosis with portal vein thrombosis
Image:Cirrhosis 028.jpg|Portal Vein Thrombosis with cirrhosis: Gross, close-up, micronodular cirrhosis with portal vein thrombosis
</gallery>
</gallery>


<gallery>
<gallery>

Revision as of 19:32, 6 September 2012

Cirrhosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cirrhosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Tertiary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case studies

Case #1

Cirrhosis pathophysiology On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cirrhosis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cirrhosis pathophysiology

CDC on Cirrhosis pathophysiology

Cirrhosis pathophysiology in the news

Blogs on Cirrhosis pathophysiology

Directions to Hospitals Treating Cirrhosis

Risk calculators and risk factors for Cirrhosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] ; Associate Editor(s)-in-Chief: Aditya Govindavarjhulla, M.B.B.S. [2]

Overview

Cirrhosis occurs due to long term liver injury which causes imbalance between matrix production and degradation. Early disruption of the normal hepatic matrix results in its replacement by scar tissue which has deleterious effects on cell function.

Pathophysiology

  • Cirrhosis is often preceded by hepatitis and fatty liver (steatosis), independent of the cause. If the cause is removed at this stage, the changes are still fully reversible.
  • The pathological hallmark of cirrhosis is the development of scar tissue that replaces normal parenchyma, blocking the portal flow of blood through the organ and disturbing normal function. The development of fibrosis requires several months to years of ongoing injury.
  • The fibrous tissue bands (septa) separate hepatocyte nodules, which eventually replace the entire liver architecture, leading to decreased blood flow throughout.
  • The spleen becomes congested, which leads to hypersplenism and increased sequestration of platelets.
  • Portal hypertension is responsible for most severe complications of cirrhosis.

Genetics

  • Certain TERT gene variant resulting in reduced telomerase activity has been found to be risk factor for sporadic cirrhosis[6]
  • An uncharacterised nucleolar protein, NOL11 has a role in the pathogenesis of North American Indian childhood cirrhosis[7]
  • Loss of interaction between C-terminus of Utp4/cirhin and other SSU processome protein may cause North American Indian childhood cirrhosis[8]

Gross Pathology

Macroscopically, the liver may be initially enlarged, but with progression of the disease, it becomes smaller. Its surface is irregular, the consistency is firm and the color is often yellow (if associates steatosis). Depending on the size of the nodules there are three macroscopic types: micronodular, macronodular and mixed cirrhosis.

  • In micronodular form (Laennec's cirrhosis or portal cirrhosis) regenerating nodules are under 3 mm.
  • In macronodular cirrhosis (post-necrotic cirrhosis), the nodules are larger than 3 mm.
  • The mixed cirrhosis consists in a variety of nodules with different sizes.

Images courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology

Microscopic Pathology

Microscopically, cirrhosis is characterized by regeneration nodules, surrounded by fibrous septa. In these nodules, regenerating hepatocytes are disorderly disposed. Portal tracts, central veins and the radial pattern of hepatocytes are absent. Fibrous septa are important and may present inflammatory infiltrate (lymphocytes, macrophages) If it is a secondary biliary cirrhosis, biliary ducts are damaged, proliferated or distended - bile stasis. These dilated ducts contain inspissated bile which appear as bile casts or bile thrombi (brown-green, amorphous). Bile retention may be found also in the parenchyma, as the so called "bile lakes".[9]

Chronic active hepatitis - Cirrhosis

{{#ev:youtube|CzKGvWZrUpU}}

Micronodular cirrhosis

{{#ev:youtube|CV8OYeIUXko}}

Primary biliary cirrhosis

{{#ev:youtube|Jj8ozr_IttM}}

References

  1. Maher JJ, McGuire RF (1990). "Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo". J. Clin. Invest. 86 (5): 1641–8. doi:10.1172/JCI114886. PMC 296914. PMID 2243137. Unknown parameter |month= ignored (help)
  2. Herbst H, Frey A, Heinrichs O; et al. (1997). "Heterogeneity of liver cells expressing procollagen types I and IV in vivo". Histochem. Cell Biol. 107 (5): 399–409. PMID 9208331. Unknown parameter |month= ignored (help)
  3. Lee JS, Semela D, Iredale J, Shah VH (2007). "Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte?". Hepatology. 45 (3): 817–25. doi:10.1002/hep.21564. PMID 17326208. Unknown parameter |month= ignored (help)
  4. Rosmorduc O, Housset C (2010). "Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease". Semin. Liver Dis. 30 (3): 258–70. doi:10.1055/s-0030-1255355. PMID 20665378. Unknown parameter |month= ignored (help)
  5. Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments. BMJ 2003;327:143-7.Fulltext. PMID 12869458.
  6. Calado RT, Brudno J, Mehta P; et al. (2011). "Constitutional telomerase mutations are genetic risk factors for cirrhosis". Hepatology. 53 (5): 1600–7. doi:10.1002/hep.24173. PMC 3082730. PMID 21520173. Unknown parameter |month= ignored (help)
  7. Freed EF, Prieto JL, McCann KL, McStay B, Baserga SJ (2012). "NOL11, Implicated in the Pathogenesis of North American Indian Childhood Cirrhosis, Is Required for Pre-rRNA Transcription and Processing". PLoS Genet. 8 (8): e1002892. doi:10.1371/journal.pgen.1002892. PMC 3420923. PMID 22916032. Unknown parameter |month= ignored (help)
  8. Freed EF, Baserga SJ (2010). "The C-terminus of Utp4, mutated in childhood cirrhosis, is essential for ribosome biogenesis". Nucleic Acids Res. 38 (14): 4798–806. doi:10.1093/nar/gkq185. PMC 2919705. PMID 20385600. Unknown parameter |month= ignored (help)
  9. Pathology atlas, "cirrhosis".

Template:WH

Template:WS