COVID-19-associated hepatic injury: Difference between revisions

Jump to navigation Jump to search
(Created page with "{| class="infobox bordered" style="width: 15em; text-align: left; font-size: 90%; background:AliceBlue" |- | colspan="1" style="text-align:center; background:DarkGray" | '''C...")
 
No edit summary
Line 1: Line 1:
{| class="infobox bordered" style="width: 15em; text-align: left; font-size: 90%; background:AliceBlue"
|-
| colspan="1" style="text-align:center; background:DarkGray" |


'''COVID-19-associated hepatic injury Microchapters'''
__NOTOC__
|- bgcolor="LightGrey"
{{SI}}                                                                 
!
{{CMG}}
==Overview==
Liver injury is relatively common among [[COVID‐19]] patients.
==Historical Perspective==
*Deranged [[ALT]] and [[AST]] levels in patients infected with COVID-19 were first reported by Nanshan Chen et al. from Wuhan Jinyintan Hospital in a January 30th, 2020 publication. 43.4% (n=43) of the patients infected with the [[COVID-19]] virus had elevated AST and ALT with one patient having an extremely high level of the enzymes, measuring in thousands.<ref name="ChenZhou2020">{{cite journal|last1=Chen|first1=Nanshan|last2=Zhou|first2=Min|last3=Dong|first3=Xuan|last4=Qu|first4=Jieming|last5=Gong|first5=Fengyun|last6=Han|first6=Yang|last7=Qiu|first7=Yang|last8=Wang|first8=Jingli|last9=Liu|first9=Ying|last10=Wei|first10=Yuan|last11=Xia|first11=Jia'an|last12=Yu|first12=Ting|last13=Zhang|first13=Xinxin|last14=Zhang|first14=Li|title=Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study|journal=The Lancet|volume=395|issue=10223|year=2020|pages=507–513|issn=01406736|doi=10.1016/S0140-6736(20)30211-7}}</ref>


|- bgcolor="LightCoral"
!
==Classification==
[[COVID-19-associated hepatic injury|Home]]
There is no formal classification of liver damage associated with COVID-19 but, we attempt to divide the entity based on the [[etiology]] and mechanism of liver damage:
|-  
*Direct viral damage to [[hepatocytes]]
!
*[[Drug induced liver injury]]
*Overactive [[immune response]]
*[[Ischemia]] and [[reperfusion injury]]
*Aggravation/ Recurrence of existing liver disease- According to the data available, 2% to 11% of  COVID-19 patients had pre-existing [[chronic liver disease]].
==Pathophysiology==
*The exact mechanism of liver injury is still unclear. There are several proposed mechanisms in an effort to understand the pathogenesis of hepatic injury but the hepatic complications in COVID-19 patients are described as multifactorial and heterogenous. A few of the proposed mechanisms include:<ref name="pmid32243269">{{cite journal |vauthors=Lee IC, Huo TI, Huang YH |title=Gastrointestinal and liver manifestations in patients with COVID-19 |journal=J Chin Med Assoc |volume=83 |issue=6 |pages=521–523 |date=June 2020 |pmid=32243269 |pmc=7176263 |doi=10.1097/JCMA.0000000000000319 |url=}}</ref><ref name="KumarSharma2020">{{cite journal|last1=Kumar|first1=Pramod|last2=Sharma|first2=Mithun|last3=Kulkarni|first3=Anand|last4=Rao|first4=Padaki N.|title=Pathogenesis of Liver Injury in Coronavirus Disease 2019|journal=Journal of Clinical and Experimental Hepatology|year=2020|issn=09736883|doi=10.1016/j.jceh.2020.05.006}}</ref><ref name="pmid32145190">{{cite journal |vauthors=Zhang C, Shi L, Wang FS |title=Liver injury in COVID-19: management and challenges |journal=Lancet Gastroenterol Hepatol |volume=5 |issue=5 |pages=428–430 |date=May 2020 |pmid=32145190 |pmc=7129165 |doi=10.1016/S2468-1253(20)30057-1 |url=}}</ref><ref name="LiXiao2020">{{cite journal|last1=Li|first1=Yueying|last2=Xiao|first2=Shu‐Yuan|title=Hepatic involvement in COVID‐19 patients: Pathology, pathogenesis, and clinical implications|journal=Journal of Medical Virology|year=2020|issn=0146-6615|doi=10.1002/jmv.25973}}</ref><ref name="TianYe2020">{{cite journal|last1=Tian|first1=Dandan|last2=Ye|first2=Qing|title=Hepatic complications of COVID‐19 and its treatment|journal=Journal of Medical Virology|year=2020|issn=0146-6615|doi=10.1002/jmv.26036}}</ref><ref name="ShehuLu2019">{{cite journal|last1=Shehu|first1=Amina I.|last2=Lu|first2=Jie|last3=Wang|first3=Pengcheng|last4=Zhu|first4=Junjie|last5=Wang|first5=Yue|last6=Yang|first6=Da|last7=McMahon|first7=Deborah|last8=Xie|first8=Wen|last9=Gonzalez|first9=Frank J.|last10=Ma|first10=Xiaochao|title=Pregnane X receptor activation potentiates ritonavir hepatotoxicity|journal=Journal of Clinical Investigation|volume=129|issue=7|year=2019|pages=2898–2903|issn=0021-9738|doi=10.1172/JCI128274}}</ref><ref name="pmid32298767">{{cite journal |vauthors=Cai Q, Huang D, Yu H, Zhu Z, Xia Z, Su Y, Li Z, Zhou G, Gou J, Qu J, Sun Y, Liu Y, He Q, Chen J, Liu L, Xu L |title=COVID-19: Abnormal liver function tests |journal=J. Hepatol. |volume= |issue= |pages= |date=April 2020 |pmid=32298767 |pmc=7194951 |doi=10.1016/j.jhep.2020.04.006 |url=}}</ref><ref name="pmid32345544">{{cite journal |vauthors=Su TH, Kao JH |title=The clinical manifestations and management of COVID-19-related liver injury |journal=J. Formos. Med. Assoc. |volume=119 |issue=6 |pages=1016–1018 |date=June 2020 |pmid=32345544 |pmc=7180368 |doi=10.1016/j.jfma.2020.04.020 |url=}}
</ref>
**''[[Hepatocyte]] injury'': Liver cell injury can be due to direct viral damage. The detection of SARS-CoV-2 RNA in stool gives a notion of viral exposure of the liver cells, directly causing the damage. The studies have not explained the specific mechanisms of [[hepatocyte]] injury as it contains minimal ACE2 receptor.
**''[[cholangiocytes|Chalangiocyte]] damage'': Angiotensin-converting enzyme 2 ([[ACE2]]) receptor expression is enriched in [[cholangiocytes]] and not in [[hepatocytes]], indicating that SARS-CoV-2 might directly bind to ACE2-positive cholangiocytes to dysregulate liver function. The studies have not yet answered about the specific mechanisms of [[cholangiocytes]] injury, and how [[hepatocyte]] injury occurs as it lacks the ACE2 receptor.
**''Immune causes'': Overactivated immune reaction causing [[cytokine storm]] and chemokine release (e.g; TNF‐α, interferon‐γ, and interleukins) leads to [[systemic inflammatory response syndrome]] (SIRS) and cellular [[necrosis]] due to [[ischemia]].
**''[[Drug induced liver injury]]'': Of the drugs known to cause liver damage include [[antimalarial drugs]], [[antibiotics]] and [[acetaminophen]] overdose. They are all used in the treatment of patients with COVID-19. Ritonavir and [[antiviral drug]] use in the treatment has been reported to cause liver damage via [[CYP3A]] [[metabolic pathway]]s via [[reactive oxygen species|ROS]] to cause membrane [[lipid peroxidation]] and [[organelle]] damage. Increasing the drug types used further increase the incidence of liver damage. The combined use of lopinavir and [[ritonavir]] was also found to lead to an increase in the chances of liver injury.
**''[[Sepsis]]''
**''[[Reperfusion injury]]'': COVID‐19 being primarily a respiratory disease explains the [[hypoxemia]] but some systemic complications such as [[ARDS]], [[SIRS]] or [[MODS]] can further increase the chances of hypoxia. Cellular [[hypoxia]] causing [[ischemia]] leads to [[adenosine triphosphate]] (ATP) depletion and eventually hepatocyte death.
**''[[Hypoxia]]'' can also cause an increase in the level of [[reactive oxygen species]] (ROS) due to [[oxidative stress]]. Thus, certain oxidation sensitive [[transcription factors]] are activated and cause the release of certain [[pro‐inflammatory factors]] and induce liver damage.
**''Others'': There can be other possible causes, such as [[positive pressure ventilation]] related [[liver congestion]] and myositis but there is no literature discussing the possibilities.
*On ''microscopic pathology'', the main pathologic finding is [[Liver sinusoid|hepatic sinusoidal]] dilatation and mild [[Lymphocyte|lymphocytic]] infiltration. Mild- moderate microvascular [[steatosis]] and multifocal hepatic [[necrosis]] have also been reported in some cases.<ref name="LiXiao2020">{{cite journal|last1=Li|first1=Yueying|last2=Xiao|first2=Shu‐Yuan|title=Hepatic involvement in COVID‐19 patients: Pathology, pathogenesis, and clinical implications|journal=Journal of Medical Virology|year=2020|issn=0146-6615|doi=10.1002/jmv.25973}}</ref>


|- bgcolor="Pink"
!
[[COVID-19-associated hepatic injury (patient information)|Patient Information]]
|-
!


|- bgcolor="Pink"
==Clinical Features== 
!
[[COVID-19-associated hepatic injury overview|Overview]]
|-
!


|- bgcolor="Pink"
==Differentiating [COVID-19] associated hepatic injury from other causes of hepatic injury==
!
*There are different etiologies of hepatic injury in general but a hepatic injury in a patient having [[COVID-19]] infection itself can be due to different reasons. Although different etiologies of the liver disease show some difference in biochemistry, we lack sufficient data to suggest a specific biochemical factor characteristic, pathognomic of [[COVID-19]] related liver injury.  Abnormal [[Liver function tests|liver biochemical markers]] at the time of diagnosis can give a clue of [[chronic liver disease]] in a patient.
[[COVID-19-associated hepatic injury historical perspective|Historical Perspective]]
* Deteriorating [[liver function tests]] during the course of hospitalization may point towards [[drug induced liver injury]] or complication of COVID-19.
|-  
!
==Epidemiology and Demographics==
* Collectively, the data from 12 clinical studies, reports that 14.8-53% [[COVID-19]] positive patients have liver injury.<ref name="TianYe2020">{{cite journal|last1=Tian|first1=Dandan|last2=Ye|first2=Qing|title=Hepatic complications of COVID‐19 and its treatment|journal=Journal of Medical Virology|year=2020|issn=0146-6615|doi=10.1002/jmv.26036}}</ref>
===Age===
===Gender===
Although  is very limited data available, the incidence of liver injury associated with [[COVID-19]] is reported to be higher in males.<ref name="FanChen2020">{{cite journal|last1=Fan|first1=Zhenyu|last2=Chen|first2=Liping|last3=Li|first3=Jun|last4=Cheng|first4=Xin|last5=Yang|first5=Jingmao|last6=Tian|first6=Cheng|last7=Zhang|first7=Yajun|last8=Huang|first8=Shaoping|last9=Liu|first9=Zhanju|last10=Cheng|first10=Jilin|title=Clinical Features of COVID-19-Related Liver Functional Abnormality|journal=Clinical Gastroenterology and Hepatology|volume=18|issue=7|year=2020|pages=1561–1566|issn=15423565|doi=10.1016/j.cgh.2020.04.002}}</ref>
===Race===
*There is no racial predilection for [disease name].
==Risk Factors==
*Common risk factors in the development of hepatic complications include:<ref name="LiXiao2020">{{cite journal|last1=Li|first1=Yueying|last2=Xiao|first2=Shu‐Yuan|title=Hepatic involvement in COVID‐19 patients: Pathology, pathogenesis, and clinical implications|journal=Journal of Medical Virology|year=2020|issn=0146-6615|doi=10.1002/jmv.25973}}</ref><ref name="pmid32345544">{{cite journal |vauthors=Su TH, Kao JH |title=The clinical manifestations and management of COVID-19-related liver injury |journal=J. Formos. Med. Assoc. |volume=119 |issue=6 |pages=1016–1018 |date=June 2020 |pmid=32345544 |pmc=7180368 |doi=10.1016/j.jfma.2020.04.020 |url=}}</ref>
**[[Chronic liver disease]]
**[[Hypoxemia]]
**Hyper‐inflammatory reactions during COVID-19 infection
**Critical COVID-19 infection - liver injury being more [[prevalent]] in patients with a critical disease (especially ICU admissions) rather mild cases, makes a severe [[coronavirus]] infection a risk factor.


|- bgcolor="Pink"
== Natural History, Complications and Prognosis==
!
* According to the data available to date, mild liver injury can occur in patients with moderate-severe illness but the incidence of hepatic dysfunction higher among patients with severe or critical [[COVID-19]] illness. <ref name="pmid32145190">{{cite journal |vauthors=Zhang C, Shi L, Wang FS |title=Liver injury in COVID-19: management and challenges |journal=Lancet Gastroenterol Hepatol |volume=5 |issue=5 |pages=428–430 |date=May 2020 |pmid=32145190 |pmc=7129165 |doi=10.1016/S2468-1253(20)30057-1 |url=}}</ref><ref name="pmid32553666">{{cite journal |vauthors=Jothimani D, Venugopal R, Abedin MF, Kaliamoorthy I, Rela M |title=COVID-19 and Liver |journal=J. Hepatol. |volume= |issue= |pages= |date=June 2020 |pmid=32553666 |pmc=7295524 |doi=10.1016/j.jhep.2020.06.006 |url=}}</ref><ref name="TianYe2020">{{cite journal|last1=Tian|first1=Dandan|last2=Ye|first2=Qing|title=Hepatic complications of COVID‐19 and its treatment|journal=Journal of Medical Virology|year=2020|issn=0146-6615|doi=10.1002/jmv.26036}}</ref>
[[COVID-19-associated hepatic injury classification|Classification]]
* The association of [[acute liver injury]] with higher [[mortality]] has also been reported.<ref name="pmid32553666">{{cite journal |vauthors=Jothimani D, Venugopal R, Abedin MF, Kaliamoorthy I, Rela M |title=COVID-19 and Liver |journal=J. Hepatol. |volume= |issue= |pages= |date=June 2020 |pmid=32553666 |pmc=7295524 |doi=10.1016/j.jhep.2020.06.006 |url=}}</ref> Research is underway and few studies describe the correlation of [[Liver function tests|liver biochemical indicators]] and severity of COVID-19. The impairment of hepatic function (guaged via [[Liver function tests|biochemical markers of hepatic function]]) may become a predictor of the exacerbation and deterioration in patients with COVID‐19.<ref name="TianYe2020">{{cite journal|last1=Tian|first1=Dandan|last2=Ye|first2=Qing|title=Hepatic complications of COVID‐19 and its treatment|journal=Journal of Medical Virology|year=2020|issn=0146-6615|doi=10.1002/jmv.26036}}</ref>
|-  
!


|- bgcolor="Pink"
*The majority of patients with [disease name] remain asymptomatic for [duration/years].
!
*Early clinical features include [manifestation 1], [manifestation 2], and [manifestation 3].
[[COVID-19-associated hepatic injury pathophysiology|Pathophysiology]]
*If left untreated, [#%] of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
|-  
*Common complications
!
*The prognosis of COVID-19 patients with mild liver injury (shown by mild elevation in [[liver function tests]]) is good and they usually recover without treatment. Patients with [[decompensated]] [[liver cirrhosis]] have an increased risk of [[mortality]] from [[COVID-19]].


|- bgcolor="Pink"
== Diagnosis ==
!
===Diagnostic Criteria===
[[COVID-19-associated hepatic injury causes|Causes]]
*The key lies in suspecting liver damage in a SARS-CoV2 patient and testing [[Liver function tests|liver biochemical]] and function tests such as [[LDH]], [[albumin]], [[ALT]], [[AST]], [[total bilirubin]], and [[INR]]. A [[COVID-19]] patient with [[acute liver failure]] should be investigated and effort has to be made to find the cause liver injury. Abnormal [[Liver function tests|liver biochemistries]] are uncommon in children.<ref name="pmid32345544">{{cite journal |vauthors=Su TH, Kao JH |title=The clinical manifestations and management of COVID-19-related liver injury |journal=J. Formos. Med. Assoc. |volume=119 |issue=6 |pages=1016–1018 |date=June 2020 |pmid=32345544 |pmc=7180368 |doi=10.1016/j.jfma.2020.04.020 |url=}}</ref>
|-  
!


|- bgcolor="Pink"
=== Symptoms ===
!
*Symptoms of [disease name] may include the following:
[[COVID-19-associated hepatic injury differential diagnosis|Differentiating COVID-19-associated hepatic injury from other Diseases]]
:*[symptom 1]
|-
!
|- bgcolor="Pink"
!
[[COVID-19-associated hepatic injury epidemiology and demographics|Epidemiology and Demographics]]
|-
!


|- bgcolor="Pink"
!
=== Physical Examination ===
[[COVID-19-associated hepatic injury risk factors|Risk Factors]]
*Patients with [disease name] usually appear
|-
*Physical examination may be remarkable for:
!
:*[finding 1]


|- bgcolor="Pink"
!
[[COVID-19-associated hepatic injury screening|Screening]]
|-
!


|- bgcolor="Pink"
=== Laboratory Findings ===
!
*Research has shown elevated [[ALT]] and [[AST]] levels in the blood of patients with liver injury on admission. AST elevation is more common than ALT, which reflects a possible source outside of liver.<ref name="pmid32298767">{{cite journal |vauthors=Cai Q, Huang D, Yu H, Zhu Z, Xia Z, Su Y, Li Z, Zhou G, Gou J, Qu J, Sun Y, Liu Y, He Q, Chen J, Liu L, Xu L |title=COVID-19: Abnormal liver function tests |journal=J. Hepatol. |volume= |issue= |pages= |date=April 2020 |pmid=32298767 |pmc=7194951 |doi=10.1016/j.jhep.2020.04.006 |url=}}</ref>
[[COVID-19-associated hepatic injury natural history, complications and prognosis|Natural History, Complications and Prognosis]]
*Serum [[albumin]] levels were found to get lower during the course of hospitalization. The tests is a measure of synthetic function of the liver.
|-
*[[ICU]] patients had higher levels of {ASLT]] and [[AST]] and a more reduced level of serum albumin indicating severe liver damage affecting its synthetic ability.
!
*Total [[bilirubin]] and [[direct bilirubin]]: The data from limited studies show a higher incidence of [[hyperbilirubinemia]] in patients who required aggressive management during the course of their disease or died.<ref name="TianYe2020">{{cite journal|last1=Tian|first1=Dandan|last2=Ye|first2=Qing|title=Hepatic complications of COVID‐19 and its treatment|journal=Journal of Medical Virology|year=2020|issn=0146-6615|doi=10.1002/jmv.26036}}</ref>
*[[LDH]] levels- a study reported the incidence of LDH levels to be highest followed by AST and ALT and suggested that LDH can be used as an early alarm tp prompt further analysis for [[COVID-19]].<ref name="FanChen2020">{{cite journal|last1=Fan|first1=Zhenyu|last2=Chen|first2=Liping|last3=Li|first3=Jun|last4=Cheng|first4=Xin|last5=Yang|first5=Jingmao|last6=Tian|first6=Cheng|last7=Zhang|first7=Yajun|last8=Huang|first8=Shaoping|last9=Liu|first9=Zhanju|last10=Cheng|first10=Jilin|title=Clinical Features of COVID-19-Related Liver Functional Abnormality|journal=Clinical Gastroenterology and Hepatology|volume=18|issue=7|year=2020|pages=1561–1566|issn=15423565|doi=10.1016/j.cgh.2020.04.002}}</ref>
* Glycoprotein [[gamma-glutamyltransferase]] (GGT) may point towards [[hepatobiliary]] involvement.
*[[PTA]] (INR) provide a good estimate of liver synthetic function.
*[[Alkaline phosphatase]] (ALP) is higher in patients.<ref name="pmid32345544">{{cite journal |vauthors=Su TH, Kao JH |title=The clinical manifestations and management of COVID-19-related liver injury |journal=J. Formos. Med. Assoc. |volume=119 |issue=6 |pages=1016–1018 |date=June 2020 |pmid=32345544 |pmc=7180368 |doi=10.1016/j.jfma.2020.04.020 |url=}}</ref>
*Levels of IL‐2‐receptor (IL‐2R), IL‐4, IL‐6, IL‐18, IL‐10, TNF‐α were significantly increased IL‐6 in the serum of COVID‐19 patients are significantly increased and correlate with disease severity.
===Imaging Findings===
*There are no [imaging study] findings associated with [disease name].
===Other tests===
*[[Procalcitonin]] is found to be higher in patients and can give a fair idea of infection.


|- bgcolor="CornFlowerBlue"
== Treatment ==
!
=== Medical Therapy ===
Diagnosis
Currently there is no specific treatment for patient with [[COVID-19]] associated liver injury. The mainstay of medical therapy is to target the viral infection and control and prevent [[inflammation]].<ref name="TianYe2020">{{cite journal|last1=Tian|first1=Dandan|last2=Ye|first2=Qing|title=Hepatic complications of COVID‐19 and its treatment|journal=Journal of Medical Virology|year=2020|issn=0146-6615|doi=10.1002/jmv.26036}}</ref><ref name="pmid32345544">{{cite journal |vauthors=Su TH, Kao JH |title=The clinical manifestations and management of COVID-19-related liver injury |journal=J. Formos. Med. Assoc. |volume=119 |issue=6 |pages=1016–1018 |date=June 2020 |pmid=32345544 |pmc=7180368 |doi=10.1016/j.jfma.2020.04.020 |url=}}</ref>
|-
*In a [[SARS-Cov2]] patient with ''mild'' hepatic biochemical abnormalities, the mainstay of treatment is actively managing the primary infection. The use of hepatoprotective and [[enzyme]]‐lowering therapy is not recommended but supportive as well as specific antiviral therapy has to be given to halt [[viral replication]] and to reduce [[inflammation]]. 
!
*In patients with ''severe'' [[COVID-19]] infection and liver injury, hyperinflammatory responses such as [[cytokine storms]] and tissue ischemia are usual causal factors. Treatment should focus on maintaining optimal blood [[oxygen saturation]]. This can be achieved either by [[oxygen therapy]] or the use of [[extracorporeal membrane oxygenation]]. The patient should be monitored closely with ongoing supportive and symptomatic treatment and correction of [[hypoproteinemia]] if required. 
*In the case of [[acute liver failure]] in a [[COVID-19]] patient, after the cause of liver failure has been established, hepatoprotective and [[enzyme]]‐lowering drugs are administered. It is important to choose lower doses and fewer types of drugs (not more than 2, in general) with known [[mechanism of action]] and composition as the hepatic [[drug metabolism]] may pose a potential risk of harming the organ. The patient should be closely monitored with frequent [[Liver function tests|hepatic biochemical tests]] such as ([[AST]], [[ALT]], [[albumin]], [[total bilirubin]] and [[INR]]. [[Acute liver injury]] should be managed with close monitoring, supportive and symptomatic treatment, and correction of [[hypoproteinemia]].
*In the cases of [[drug induced liver injury]], it is important to assess the degree of liver damage and identify the drug responsible and then adjust the treatment accordingly. If possible completely stop the drug, reduce the amount, or use an alternative drug. Anti‐inflammatory and hepatoprotective treatment should be provided. It is not recommended to discontinue [[Hepatitis B]] and [[Hepatitis C]] treatments but large doses of hormones are not to be used simultaneously.
* In patients with underlying [[chronic liver diseases]], target the coronavirus infection and maintain the original therapy for the chronic liver diseases.
* [[Liver function tests]] can serve as indicators of disease progression.
*Treatment and prevention of inflammation in the early stages of the disease will prevent severe disease.


|- bgcolor="LightSkyBlue"
!
[[COVID-19-associated hepatic injury diagnostic study of choice|Diagnostic Study of Choice]]
|-
!


|- bgcolor="LightSkyBlue"
!
=== Surgery ===
[[COVID-19-associated hepatic injury history and symptoms|History and Symptoms]]
Hepatic transplant patients have been identified but no research is published on a case of liver transplant in a patient with COVID-19 related liver damage.
|-
!


|- bgcolor="LightSkyBlue"
=== Prevention ===
!
*At this time, the only effective measures for the primary prevention of COVID-19 related liver damage include prevention of itself [[COVID-19]]. [[Drug induced liver injury]] can be prevented by carefully selecting the drug with a known mechanism of action, not using more than two drugs, and avoiding large doses of hormones along with antiviral drugs.
[[COVID-19-associated hepatic injury physical examination|Physical Examination]]
|-
!


|- bgcolor="LightSkyBlue"
==References==
!
{{Reflist|2}}
[[COVID-19-associated hepatic injury laboratory findings|Laboratory Findings]]
|-
[[Category: Hepatic, infectious disease]]
!


|- bgcolor="LightSkyBlue"
{{WS}}
!
{{WH}}
[[COVID-19-associated hepatic injury electrocardiogram|Electrocardiogram]]
|-
!
 
|- bgcolor="LightSkyBlue"
!
[[COVID-19-associated hepatic injury x ray|X-ray]]
|-
!
 
|- bgcolor="LightSkyBlue"
!
[[COVID-19-associated hepatic injury echocardiography and ultrasound|Echocardiography and Ultrasound]]
|-
!
 
|- bgcolor="LightSkyBlue"
!
[[COVID-19-associated hepatic injury CT scan|CT scan]]
|-
!
 
|- bgcolor="LightSkyBlue"
!
[[COVID-19-associated hepatic injury MRI|MRI]]
|-
!
 
|- bgcolor="LightSkyBlue"
!
[[COVID-19-associated hepatic injury other imaging findings|Other Imaging Findings]]
|-
!
 
|- bgcolor="LightSkyBlue"
!
[[COVID-19-associated hepatic injury other diagnostic studies|Other Diagnostic Studies]]
|-
!
 
|- bgcolor="CadetBlue"
!
Treatment
|-
!
 
|- bgcolor="PaleTurquoise"
!
[[COVID-19-associated hepatic injury medical therapy|Medical Therapy]]
|-
!
 
|- bgcolor="PaleTurquoise"
!
[[COVID-19-associated hepatic injury interventions|Interventions]]
|-
!
 
|- bgcolor="PaleTurquoise"
!
[[COVID-19-associated hepatic injury surgery|Surgery]]
|-
!
 
|- bgcolor="PaleTurquoise"
!
[[COVID-19-associated hepatic injury primary prevention|Primary Prevention]]
|-
!
 
|- bgcolor="PaleTurquoise"
!
[[COVID-19-associated hepatic injury secondary prevention|Secondary Prevention]]
|-
!
 
|- bgcolor="PaleTurquoise"
!
[[COVID-19-associated hepatic injury cost-effectiveness of therapy|Cost-Effectiveness of Therapy]]
|-
!
 
|- bgcolor="PaleTurquoise"
!
[[COVID-19-associated hepatic injury future or investigational therapies|Future or Investigational Therapies]]
|-
!
 
|- bgcolor="CadetBlue"
!
Case Studies
|-
!
 
|- bgcolor="PaleTurquoise"
!
[[COVID-19-associated hepatic injury case study one|Case #1]]
|-
!
 
|- bgcolor="PaleGoldenrod "
!
{{PAGENAME}} On the Web
|-
!
 
|- bgcolor="LightYellow"
!
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=pubmed&term={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}} Most recent articles]
|-
!
 
|- bgcolor="LightYellow"
!
[http://scholar.google.com/scholar?ie=UTF-8&oe=utf-8&q={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}&qt_s=Search&sa=N&tab=ps Most cited articles]
|-
!
 
|- bgcolor="LightYellow"
!
[http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pubmed&term={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}%20AND%20systematic%5Bsb%5D  Review articles]
|-
!
 
|- bgcolor="LightYellow"
!
[http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla:en-US:official&q={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}+more:health_continuing_education&cx=disease_for_health_professionals&sa=N&oi=coopctx&resnum=0&ct=col3&cd=2 CME Programs]
|-
!
 
|- bgcolor="LightYellow"
!
[http://www.google.com/search?q={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}+ppt&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a Powerpoint slides]
|-
!
 
|- bgcolor="LightYellow"
!
[http://images.google.com/images?q={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}&ie=UTF-8&oe=utf-8&rls=org.mozilla:en-US:official&client=firefox-a&um=1&sa=N&tab=wi Images]
|-
!
 
|- bgcolor="LightYellow"
!
American Roentgen Ray Society Images of {{PAGENAME}}
:[http://goldminer.arrs.org/search.php?query={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}} All Images]
:[http://goldminer.arrs.org/search.php?query={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}} X-ray}}}} X-rays]
:[http://goldminer.arrs.org/search.php?query={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}} Ultrasound}}}} Echo & Ultrasound]
:[http://goldminer.arrs.org/search.php?query={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}} CT}}}} CT Images]
:[http://goldminer.arrs.org/search.php?query={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}} MRI}}}} MRI]
|-
!
 
|- bgcolor="LightYellow"
!
[http://clinicaltrials.gov/search/open/condition={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}} Ongoing Trials  at Clinical Trials.gov]
|-
!
 
|- bgcolor="LightYellow"
!
[http://www.guideline.gov/search/searchresults.aspx?Type=3&txtSearch={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}&num=20 US National Guidelines Clearinghouse]
|-
!
 
|- bgcolor="LightYellow"
!
[http://www.nice.org.uk/search/guidancesearchresults.jsp?keywords={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}&searchType=guidance NICE Guidance]
|-
!
 
|- bgcolor="LightYellow"
!
[http://google2.fda.gov/search?q={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}&x=0&y=0&client=FDA&site=FDA&lr=&proxystylesheet=FDA&output=xml_no_dtd&getfields=* FDA on {{PAGENAME}}]
|-
!
 
|- bgcolor="LightYellow"
!
[http://www.cdc.gov/search.do?queryText={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}&searchButton.x=33&searchButton.y=6&action=search CDC on {{PAGENAME}}]
|-
!
 
|- bgcolor="LightYellow"
!
[http://news.google.com/news?q={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}&ie=UTF-8&oe=utf-8&rls=org.mozilla:en-US:official&client=firefox-a&um=1&sa=N&tab=wn {{PAGENAME}} in the news]
|-
!
 
|- bgcolor="LightYellow"
!
[http://blogsearch.google.com/blogsearch?q={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}&ie=UTF-8&oe=utf-8&rls=org.mozilla:en-US:official&client=firefox-a&um=1&sa=N&tab=wb Blogs on {{PAGENAME}}]
|-
!
 
|- bgcolor="LightYellow"
!
[http://maps.google.com/maps?q={{urlencode:{{#if:{{{1|}}}|{{{1}}}|map+top+hospital+Psoriasis}}}}&oe=utf-8&rls=org.mozilla:en-US:official&client=firefox-a&um=1&ie=UTF-8&sa=N&hl=en&tab=wl Directions to Hospitals Treating Psoriasis]
|-
!
 
|- bgcolor="LightYellow"
!
[http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla%3Aen-US%3Aofficial&hs=QWo&q={{urlencode:{{#if:{{{1|}}}|{{{1}}}|{{PAGENAME}}}}}}+AND+risk+score+OR+risk+calculator&btnG=Search Risk calculators and risk factors for {{PAGENAME}}]
|-
!
 
|}

Revision as of 15:27, 27 June 2020


WikiDoc Resources for COVID-19-associated hepatic injury

Articles

Most recent articles on COVID-19-associated hepatic injury

Most cited articles on COVID-19-associated hepatic injury

Review articles on COVID-19-associated hepatic injury

Articles on COVID-19-associated hepatic injury in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on COVID-19-associated hepatic injury

Images of COVID-19-associated hepatic injury

Photos of COVID-19-associated hepatic injury

Podcasts & MP3s on COVID-19-associated hepatic injury

Videos on COVID-19-associated hepatic injury

Evidence Based Medicine

Cochrane Collaboration on COVID-19-associated hepatic injury

Bandolier on COVID-19-associated hepatic injury

TRIP on COVID-19-associated hepatic injury

Clinical Trials

Ongoing Trials on COVID-19-associated hepatic injury at Clinical Trials.gov

Trial results on COVID-19-associated hepatic injury

Clinical Trials on COVID-19-associated hepatic injury at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on COVID-19-associated hepatic injury

NICE Guidance on COVID-19-associated hepatic injury

NHS PRODIGY Guidance

FDA on COVID-19-associated hepatic injury

CDC on COVID-19-associated hepatic injury

Books

Books on COVID-19-associated hepatic injury

News

COVID-19-associated hepatic injury in the news

Be alerted to news on COVID-19-associated hepatic injury

News trends on COVID-19-associated hepatic injury

Commentary

Blogs on COVID-19-associated hepatic injury

Definitions

Definitions of COVID-19-associated hepatic injury

Patient Resources / Community

Patient resources on COVID-19-associated hepatic injury

Discussion groups on COVID-19-associated hepatic injury

Patient Handouts on COVID-19-associated hepatic injury

Directions to Hospitals Treating COVID-19-associated hepatic injury

Risk calculators and risk factors for COVID-19-associated hepatic injury

Healthcare Provider Resources

Symptoms of COVID-19-associated hepatic injury

Causes & Risk Factors for COVID-19-associated hepatic injury

Diagnostic studies for COVID-19-associated hepatic injury

Treatment of COVID-19-associated hepatic injury

Continuing Medical Education (CME)

CME Programs on COVID-19-associated hepatic injury

International

COVID-19-associated hepatic injury en Espanol

COVID-19-associated hepatic injury en Francais

Business

COVID-19-associated hepatic injury in the Marketplace

Patents on COVID-19-associated hepatic injury

Experimental / Informatics

List of terms related to COVID-19-associated hepatic injury

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Liver injury is relatively common among COVID‐19 patients.

Historical Perspective

  • Deranged ALT and AST levels in patients infected with COVID-19 were first reported by Nanshan Chen et al. from Wuhan Jinyintan Hospital in a January 30th, 2020 publication. 43.4% (n=43) of the patients infected with the COVID-19 virus had elevated AST and ALT with one patient having an extremely high level of the enzymes, measuring in thousands.[1]


Classification

There is no formal classification of liver damage associated with COVID-19 but, we attempt to divide the entity based on the etiology and mechanism of liver damage:

Pathophysiology


Clinical Features

Differentiating [COVID-19] associated hepatic injury from other causes of hepatic injury

  • There are different etiologies of hepatic injury in general but a hepatic injury in a patient having COVID-19 infection itself can be due to different reasons. Although different etiologies of the liver disease show some difference in biochemistry, we lack sufficient data to suggest a specific biochemical factor characteristic, pathognomic of COVID-19 related liver injury. Abnormal liver biochemical markers at the time of diagnosis can give a clue of chronic liver disease in a patient.
  • Deteriorating liver function tests during the course of hospitalization may point towards drug induced liver injury or complication of COVID-19.

Epidemiology and Demographics

  • Collectively, the data from 12 clinical studies, reports that 14.8-53% COVID-19 positive patients have liver injury.[6]

Age

Gender

Although is very limited data available, the incidence of liver injury associated with COVID-19 is reported to be higher in males.[10]

Race

  • There is no racial predilection for [disease name].

Risk Factors

  • Common risk factors in the development of hepatic complications include:[5][9]
    • Chronic liver disease
    • Hypoxemia
    • Hyper‐inflammatory reactions during COVID-19 infection
    • Critical COVID-19 infection - liver injury being more prevalent in patients with a critical disease (especially ICU admissions) rather mild cases, makes a severe coronavirus infection a risk factor.

Natural History, Complications and Prognosis

  • According to the data available to date, mild liver injury can occur in patients with moderate-severe illness but the incidence of hepatic dysfunction higher among patients with severe or critical COVID-19 illness. [4][11][6]
  • The association of acute liver injury with higher mortality has also been reported.[11] Research is underway and few studies describe the correlation of liver biochemical indicators and severity of COVID-19. The impairment of hepatic function (guaged via biochemical markers of hepatic function) may become a predictor of the exacerbation and deterioration in patients with COVID‐19.[6]
  • The majority of patients with [disease name] remain asymptomatic for [duration/years].
  • Early clinical features include [manifestation 1], [manifestation 2], and [manifestation 3].
  • If left untreated, [#%] of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
  • Common complications
  • The prognosis of COVID-19 patients with mild liver injury (shown by mild elevation in liver function tests) is good and they usually recover without treatment. Patients with decompensated liver cirrhosis have an increased risk of mortality from COVID-19.

Diagnosis

Diagnostic Criteria

Symptoms

  • Symptoms of [disease name] may include the following:
  • [symptom 1]


Physical Examination

  • Patients with [disease name] usually appear
  • Physical examination may be remarkable for:
  • [finding 1]


Laboratory Findings

  • Research has shown elevated ALT and AST levels in the blood of patients with liver injury on admission. AST elevation is more common than ALT, which reflects a possible source outside of liver.[8]
  • Serum albumin levels were found to get lower during the course of hospitalization. The tests is a measure of synthetic function of the liver.
  • ICU patients had higher levels of {ASLT]] and AST and a more reduced level of serum albumin indicating severe liver damage affecting its synthetic ability.
  • Total bilirubin and direct bilirubin: The data from limited studies show a higher incidence of hyperbilirubinemia in patients who required aggressive management during the course of their disease or died.[6]
  • LDH levels- a study reported the incidence of LDH levels to be highest followed by AST and ALT and suggested that LDH can be used as an early alarm tp prompt further analysis for COVID-19.[10]
  • Glycoprotein gamma-glutamyltransferase (GGT) may point towards hepatobiliary involvement.
  • PTA (INR) provide a good estimate of liver synthetic function.
  • Alkaline phosphatase (ALP) is higher in patients.[9]
  • Levels of IL‐2‐receptor (IL‐2R), IL‐4, IL‐6, IL‐18, IL‐10, TNF‐α were significantly increased IL‐6 in the serum of COVID‐19 patients are significantly increased and correlate with disease severity.

Imaging Findings

  • There are no [imaging study] findings associated with [disease name].

Other tests

  • Procalcitonin is found to be higher in patients and can give a fair idea of infection.


Treatment

Medical Therapy

Currently there is no specific treatment for patient with COVID-19 associated liver injury. The mainstay of medical therapy is to target the viral infection and control and prevent inflammation.[6][9]

  • In a SARS-Cov2 patient with mild hepatic biochemical abnormalities, the mainstay of treatment is actively managing the primary infection. The use of hepatoprotective and enzyme‐lowering therapy is not recommended but supportive as well as specific antiviral therapy has to be given to halt viral replication and to reduce inflammation.
  • In patients with severe COVID-19 infection and liver injury, hyperinflammatory responses such as cytokine storms and tissue ischemia are usual causal factors. Treatment should focus on maintaining optimal blood oxygen saturation. This can be achieved either by oxygen therapy or the use of extracorporeal membrane oxygenation. The patient should be monitored closely with ongoing supportive and symptomatic treatment and correction of hypoproteinemia if required.
  • In the case of acute liver failure in a COVID-19 patient, after the cause of liver failure has been established, hepatoprotective and enzyme‐lowering drugs are administered. It is important to choose lower doses and fewer types of drugs (not more than 2, in general) with known mechanism of action and composition as the hepatic drug metabolism may pose a potential risk of harming the organ. The patient should be closely monitored with frequent hepatic biochemical tests such as (AST, ALT, albumin, total bilirubin and INR. Acute liver injury should be managed with close monitoring, supportive and symptomatic treatment, and correction of hypoproteinemia.
  • In the cases of drug induced liver injury, it is important to assess the degree of liver damage and identify the drug responsible and then adjust the treatment accordingly. If possible completely stop the drug, reduce the amount, or use an alternative drug. Anti‐inflammatory and hepatoprotective treatment should be provided. It is not recommended to discontinue Hepatitis B and Hepatitis C treatments but large doses of hormones are not to be used simultaneously.
  • In patients with underlying chronic liver diseases, target the coronavirus infection and maintain the original therapy for the chronic liver diseases.
  • Liver function tests can serve as indicators of disease progression.
  • Treatment and prevention of inflammation in the early stages of the disease will prevent severe disease.


Surgery

Hepatic transplant patients have been identified but no research is published on a case of liver transplant in a patient with COVID-19 related liver damage.

Prevention

  • At this time, the only effective measures for the primary prevention of COVID-19 related liver damage include prevention of itself COVID-19. Drug induced liver injury can be prevented by carefully selecting the drug with a known mechanism of action, not using more than two drugs, and avoiding large doses of hormones along with antiviral drugs.

References

  1. Chen, Nanshan; Zhou, Min; Dong, Xuan; Qu, Jieming; Gong, Fengyun; Han, Yang; Qiu, Yang; Wang, Jingli; Liu, Ying; Wei, Yuan; Xia, Jia'an; Yu, Ting; Zhang, Xinxin; Zhang, Li (2020). "Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study". The Lancet. 395 (10223): 507–513. doi:10.1016/S0140-6736(20)30211-7. ISSN 0140-6736.
  2. Lee IC, Huo TI, Huang YH (June 2020). "Gastrointestinal and liver manifestations in patients with COVID-19". J Chin Med Assoc. 83 (6): 521–523. doi:10.1097/JCMA.0000000000000319. PMC 7176263 Check |pmc= value (help). PMID 32243269 Check |pmid= value (help).
  3. Kumar, Pramod; Sharma, Mithun; Kulkarni, Anand; Rao, Padaki N. (2020). "Pathogenesis of Liver Injury in Coronavirus Disease 2019". Journal of Clinical and Experimental Hepatology. doi:10.1016/j.jceh.2020.05.006. ISSN 0973-6883.
  4. 4.0 4.1 Zhang C, Shi L, Wang FS (May 2020). "Liver injury in COVID-19: management and challenges". Lancet Gastroenterol Hepatol. 5 (5): 428–430. doi:10.1016/S2468-1253(20)30057-1. PMC 7129165 Check |pmc= value (help). PMID 32145190 Check |pmid= value (help).
  5. 5.0 5.1 5.2 Li, Yueying; Xiao, Shu‐Yuan (2020). "Hepatic involvement in COVID‐19 patients: Pathology, pathogenesis, and clinical implications". Journal of Medical Virology. doi:10.1002/jmv.25973. ISSN 0146-6615.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 Tian, Dandan; Ye, Qing (2020). "Hepatic complications of COVID‐19 and its treatment". Journal of Medical Virology. doi:10.1002/jmv.26036. ISSN 0146-6615.
  7. Shehu, Amina I.; Lu, Jie; Wang, Pengcheng; Zhu, Junjie; Wang, Yue; Yang, Da; McMahon, Deborah; Xie, Wen; Gonzalez, Frank J.; Ma, Xiaochao (2019). "Pregnane X receptor activation potentiates ritonavir hepatotoxicity". Journal of Clinical Investigation. 129 (7): 2898–2903. doi:10.1172/JCI128274. ISSN 0021-9738.
  8. 8.0 8.1 Cai Q, Huang D, Yu H, Zhu Z, Xia Z, Su Y, Li Z, Zhou G, Gou J, Qu J, Sun Y, Liu Y, He Q, Chen J, Liu L, Xu L (April 2020). "COVID-19: Abnormal liver function tests". J. Hepatol. doi:10.1016/j.jhep.2020.04.006. PMC 7194951 Check |pmc= value (help). PMID 32298767 Check |pmid= value (help).
  9. 9.0 9.1 9.2 9.3 9.4 Su TH, Kao JH (June 2020). "The clinical manifestations and management of COVID-19-related liver injury". J. Formos. Med. Assoc. 119 (6): 1016–1018. doi:10.1016/j.jfma.2020.04.020. PMC 7180368 Check |pmc= value (help). PMID 32345544 Check |pmid= value (help).
  10. 10.0 10.1 Fan, Zhenyu; Chen, Liping; Li, Jun; Cheng, Xin; Yang, Jingmao; Tian, Cheng; Zhang, Yajun; Huang, Shaoping; Liu, Zhanju; Cheng, Jilin (2020). "Clinical Features of COVID-19-Related Liver Functional Abnormality". Clinical Gastroenterology and Hepatology. 18 (7): 1561–1566. doi:10.1016/j.cgh.2020.04.002. ISSN 1542-3565.
  11. 11.0 11.1 Jothimani D, Venugopal R, Abedin MF, Kaliamoorthy I, Rela M (June 2020). "COVID-19 and Liver". J. Hepatol. doi:10.1016/j.jhep.2020.06.006. PMC 7295524 Check |pmc= value (help). PMID 32553666 Check |pmid= value (help).

Template:WS Template:WH