NIPA1: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Non-imprinted in Prader-Willi/Angelman syndrome region protein 1''' is a [[protein]] that in humans is encoded by the ''NIPA1'' [[gene]].<ref name="pmid14508710">{{cite journal |vauthors=Rainier S, Chai JH, Tokarz D, Nicholls RD, Fink JK | title = NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6) | journal = Am J Hum Genet | volume = 73 | issue = 4 | pages = 967–71 |date=Sep 2003 | pmid = 14508710 | pmc = 1180617 | doi = 10.1086/378817 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: NIPA1 non imprinted in Prader-Willi/Angelman syndrome 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=123606| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = no
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Non imprinted in Prader-Willi/Angelman syndrome 1
| HGNCid = 17043
| Symbol = NIPA1
| AltSymbols =; FSP3; MGC102724; MGC35570; SPG6
| OMIM = 608145
| ECnumber = 
| Homologene = 42327
| MGIid = 2442058
| GeneAtlas_image1 = PBB_GE_NIPA1_gnf1h07157_at_tn.png
| Function =
| Component = {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process =  
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 123606
    | Hs_Ensembl = ENSG00000170113
    | Hs_RefseqProtein = NP_653200
    | Hs_RefseqmRNA = NM_144599
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 15
    | Hs_GenLoc_start = 20594720
    | Hs_GenLoc_end = 20637877
    | Hs_Uniprot = Q7RTP0
    | Mm_EntrezGene = 233280
    | Mm_Ensembl = ENSMUSG00000047037
    | Mm_RefseqmRNA = NM_153578
    | Mm_RefseqProtein = NP_705806
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 7
    | Mm_GenLoc_start = 55846486
    | Mm_GenLoc_end = 55887606
    | Mm_Uniprot = Q3TLT5
  }}
}}
'''Non imprinted in Prader-Willi/Angelman syndrome 1''', also known as '''NIPA1''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: NIPA1 non imprinted in Prader-Willi/Angelman syndrome 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=123606| accessdate = }}</ref>
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =  
| section_title =  
| summary_text = This gene encodes a potential [[transmembrane protein]] which functions either as a receptor or transporter molecule, possibly as a [[magnesium]] transporter.<ref>{{cite journal  | author=Goytain A, Hines RM, El-Husseini A, Quamme GA |title=NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. |journal=J. Biol. Chem. |volume=282 |issue= 11 |pages= 8060-8 |year= 2007 |pmid= 17166836 |doi= 10.1074/jbc.M610314200 }}</ref> This protein is thought to play a role in [[nervous system]] development and maintenance. Alternative [[splice variant]]s have been described, but their biological nature has not been determined. Mutations in this gene have been associated with the human [[genetic disease]] autosomal dominant [[spastic paraplegia|spastic paraplegia 6]].<ref>{{cite journal | author=Reed JA, Wilkinson PA, Patel H, ''et al.'' |title=A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia. |journal=Neurogenetics |volume=6 |issue= 2 |pages= 79-84 |year= 2005 |pmid= 15711826 |doi= 10.1007/s10048-004-0209-9 }}</ref><ref>{{cite journal | author=Rainier S, Chai JH, Tokarz D, ''et al.'' |title=NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). |journal=Am. J. Hum. Genet. |volume=73 |issue= 4 |pages= 967-71 |year= 2003 |pmid= 14508710}}</ref>
| summary_text = This gene encodes a potential [[transmembrane protein]] which functions either as a receptor or transporter molecule, possibly as a [[magnesium]] transporter.<ref>{{cite journal  |vauthors=Goytain A, Hines RM, El-Husseini A, Quamme GA |title=NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. |journal=J. Biol. Chem. |volume=282 |issue= 11 |pages= 8060–8 |year= 2007 |pmid= 17166836 |doi= 10.1074/jbc.M610314200 }}</ref> This protein is thought to play a role in [[nervous system]] development and maintenance. Alternative [[splice variant]]s have been described, but their biological nature has not been determined. Mutations in this gene have been associated with the human [[genetic disease]] autosomal dominant [[spastic paraplegia|spastic paraplegia 6]].<ref>{{cite journal   |vauthors=Reed JA, Wilkinson PA, Patel H, etal |title=A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia. |journal=Neurogenetics |volume=6 |issue= 2 |pages= 79–84 |year= 2005 |pmid= 15711826 |doi= 10.1007/s10048-004-0209-9 }}</ref><ref>{{cite journal   |vauthors=Rainier S, Chai JH, Tokarz D, etal |title=NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). |journal=Am. J. Hum. Genet. |volume=73 |issue= 4 |pages= 967–71 |year= 2003 |pmid= 14508710 |doi=10.1086/378817  | pmc=1180617}}</ref>
}}
}}
==Model organisms==
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
|+ ''Nipa1'' knockout mouse phenotype
|-
! Characteristic!! Phenotype
|-
| [[Homozygote]] viability || bgcolor="#488ED3"|Normal
|-
| Fertility || bgcolor="#488ED3"|Normal
|-
| Body weight || bgcolor="#488ED3"|Normal
|-
| [[Open Field (animal test)|Anxiety]] || bgcolor="#488ED3"|Normal
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot plate test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#488ED3"|Normal
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
|-
| [[Blood plasma|Plasma]] [[immunoglobulin]]s || bgcolor="#488ED3"|Normal
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Micronucleus test]] || bgcolor="#488ED3"|Normal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| Skin Histopathology || bgcolor="#488ED3"|Normal
|-
| Brain histopathology || bgcolor="#488ED3"|Normal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBMV/salmonella-challenge/ |title=''Salmonella'' infection data for Nipa1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| ''[[Citrobacter]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Citrobacter'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBMV/citrobacter-challenge/ |title=''Citrobacter'' infection data for Nipa1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal| doi = 10.1111/j.1755-3768.2010.4142.x| title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice| year = 2010| author = Gerdin AK| journal = Acta Ophthalmologica| volume = 88| issue = S248 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
[[Model organism]]s have been used in the study of NIPA1 function. A conditional [[knockout mouse]] line, called ''Nipa1<sup>tm1a(KOMP)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Nipa1 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4363744 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the [[Wellcome Trust Sanger Institute]].<ref name="pmid21677750">{{Cite journal
| last1 = Skarnes |first1 =W. C.
| doi = 10.1038/nature10163
| last2 = Rosen | first2 = B.
| last3 = West | first3 = A. P.
| last4 = Koutsourakis | first4 = M.
| last5 = Bushell | first5 = W.
| last6 = Iyer | first6 = V.
| last7 = Mujica | first7 = A. O.
| last8 = Thomas | first8 = M.
| last9 = Harrow | first9 = J.
| last10 = Cox | first10 = T.
| last11 = Jackson | first11 = D.
| last12 = Severin | first12 = J.
| last13 = Biggs | first13 = P.
| last14 = Fu | first14 = J.
| last15 = Nefedov | first15 = M.
| last16 = De Jong | first16 = P. J.
| last17 = Stewart | first17 = A. F.
| last18 = Bradley | first18 = A.
| title = A conditional knockout resource for the genome-wide study of mouse gene function
| journal = Nature
| volume = 474
| issue = 7351
| pages = 337–342
| year = 2011
| pmid = 21677750
| pmc =3572410
}}</ref><ref name="mouse_library">{{cite journal |author=Dolgin E |title=Mouse library set to be knockout |journal=Nature |volume=474 |issue=7351 |pages=262–3 |date=June 2011 |pmid=21677718 |doi=10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal |vauthors=Collins FS, Rossant J, Wurst W |title=A mouse for all reasons |journal=Cell |volume=128 |issue=1 |pages=9–13 |date=January 2007 |pmid=17218247 |doi=10.1016/j.cell.2006.12.018 }}</ref>
Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal|vauthors=van der Weyden L, White JK, Adams DJ, Logan DW | title=The mouse genetics toolkit: revealing function and mechanism. | journal=Genome Biol | year= 2011 | volume= 12 | issue= 6 | pages= 224 | pmid=21722353 | doi=10.1186/gb-2011-12-6-224 | pmc=3218837}}</ref> Twenty four tests were carried out on [[mutant]] mice but no significant abnormalities were observed.<ref name="mgp_reference" />


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Bittel DC, Kibiryeva N, Butler MG |title=Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. |journal=Pediatrics |volume=118 |issue= 4 |pages= e1276-83 |year= 2006 |pmid= 16982806 |doi= 10.1542/peds.2006-0424 }}
*{{cite journal  |vauthors=Bittel DC, Kibiryeva N, Butler MG |title=Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. |journal=Pediatrics |volume=118 |issue= 4 |pages= e1276–83 |year= 2006 |pmid= 16982806 |doi= 10.1542/peds.2006-0424 }}
*{{cite journal | author=Liu T, Qian WJ, Gritsenko MA, ''et al.'' |title=Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. |journal=J. Proteome Res. |volume=4 |issue= 6 |pages= 2070-80 |year= 2006 |pmid= 16335952 |doi= 10.1021/pr0502065 }}
*{{cite journal   |vauthors=Liu T, Qian WJ, Gritsenko MA, etal |title=Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. |journal=J. Proteome Res. |volume=4 |issue= 6 |pages= 2070–80 |year= 2006 |pmid= 16335952 |doi= 10.1021/pr0502065 | pmc=1850943 }}
*{{cite journal | author=Munhoz RP, Kawarai T, Teive HA, ''et al.'' |title=Clinical and genetic study of a Brazilian family with spastic paraplegia (SPG6 locus). |journal=Mov. Disord. |volume=21 |issue= 2 |pages= 279-81 |year= 2006 |pmid= 16267846 |doi= 10.1002/mds.20775 }}
*{{cite journal   |vauthors=Munhoz RP, Kawarai T, Teive HA, etal |title=Clinical and genetic study of a Brazilian family with spastic paraplegia (SPG6 locus). |journal=Mov. Disord. |volume=21 |issue= 2 |pages= 279–81 |year= 2006 |pmid= 16267846 |doi= 10.1002/mds.20775 }}
*{{cite journal | author=Chen S, Song C, Guo H, ''et al.'' |title=Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. |journal=Hum. Mutat. |volume=25 |issue= 2 |pages= 135-41 |year= 2006 |pmid= 15643603 |doi= 10.1002/humu.20126 }}
*{{cite journal   |vauthors=Chen S, Song C, Guo H, etal |title=Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. |journal=Hum. Mutat. |volume=25 |issue= 2 |pages= 135–41 |year= 2006 |pmid= 15643603 |doi= 10.1002/humu.20126 }}
*{{cite journal | author=Chai JH, Locke DP, Greally JM, ''et al.'' |title=Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. |journal=Am. J. Hum. Genet. |volume=73 |issue= 4 |pages= 898-925 |year= 2003 |pmid= 14508708 |doi=  }}
*{{cite journal   |vauthors=Chai JH, Locke DP, Greally JM, etal |title=Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. |journal=Am. J. Hum. Genet. |volume=73 |issue= 4 |pages= 898–925 |year= 2003 |pmid= 14508708 |doi=10.1086/378816  | pmc=1180611 }}
*{{cite journal | author=Toyoda N, Nagai S, Terashima Y, ''et al.'' |title=Analysis of mRNA with microsomal fractionation using a SAGE-based DNA microarray system facilitates identification of the genes encoding secretory proteins. |journal=Genome Res. |volume=13 |issue= 7 |pages= 1728-36 |year= 2003 |pmid= 12805275 |doi= 10.1101/gr.709603 }}
*{{cite journal   |vauthors=Toyoda N, Nagai S, Terashima Y, etal |title=Analysis of mRNA with microsomal fractionation using a SAGE-based DNA microarray system facilitates identification of the genes encoding secretory proteins. |journal=Genome Res. |volume=13 |issue= 7 |pages= 1728–36 |year= 2003 |pmid= 12805275 |doi= 10.1101/gr.709603 | pmc=403746 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal | author=Fink JK, Jones SM, Sharp GB, ''et al.'' |title=Hereditary spastic paraplegia linked to chromosome 15q: Analysis of candidate genes. |journal=Neurology |volume=46 |issue= 3 |pages= 835-6 |year= 1996 |pmid= 8618696 |doi=  }}
*{{cite journal   |vauthors=Fink JK, Jones SM, Sharp GB, etal |title=Hereditary spastic paraplegia linked to chromosome 15q: Analysis of candidate genes. |journal=Neurology |volume=46 |issue= 3 |pages= 835–6 |year= 1996 |pmid= 8618696 |doi=  10.1212/wnl.46.3.835}}
*{{cite journal | author=Fink JK, Wu CT, Jones SM, ''et al.'' |title=Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. |journal=Am. J. Hum. Genet. |volume=56 |issue= 1 |pages= 188-92 |year= 1995 |pmid= 7825577 |doi=  }}
*{{cite journal   |vauthors=Fink JK, Wu CT, Jones SM, etal |title=Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. |journal=Am. J. Hum. Genet. |volume=56 |issue= 1 |pages= 188–92 |year= 1995 |pmid= 7825577 |doi= | pmc=1801321 }}
}}
}}
{{refend}}
{{refend}}


{{protein-stub}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{WikiDoc Sources}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = no
| update_citations = yes
}}
 
[[Category:Genes mutated in mice]]

Latest revision as of 13:01, 5 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Non-imprinted in Prader-Willi/Angelman syndrome region protein 1 is a protein that in humans is encoded by the NIPA1 gene.[1][2] This gene encodes a potential transmembrane protein which functions either as a receptor or transporter molecule, possibly as a magnesium transporter.[3] This protein is thought to play a role in nervous system development and maintenance. Alternative splice variants have been described, but their biological nature has not been determined. Mutations in this gene have been associated with the human genetic disease autosomal dominant spastic paraplegia 6.[4][5]

Model organisms

Model organisms have been used in the study of NIPA1 function. A conditional knockout mouse line, called Nipa1tm1a(KOMP)Wtsi[10][11] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[12][13][14]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[8][15] Twenty four tests were carried out on mutant mice but no significant abnormalities were observed.[8]

References

  1. Rainier S, Chai JH, Tokarz D, Nicholls RD, Fink JK (Sep 2003). "NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6)". Am J Hum Genet. 73 (4): 967–71. doi:10.1086/378817. PMC 1180617. PMID 14508710.
  2. "Entrez Gene: NIPA1 non imprinted in Prader-Willi/Angelman syndrome 1".
  3. Goytain A, Hines RM, El-Husseini A, Quamme GA (2007). "NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter". J. Biol. Chem. 282 (11): 8060–8. doi:10.1074/jbc.M610314200. PMID 17166836.
  4. Reed JA, Wilkinson PA, Patel H, et al. (2005). "A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia". Neurogenetics. 6 (2): 79–84. doi:10.1007/s10048-004-0209-9. PMID 15711826.
  5. Rainier S, Chai JH, Tokarz D, et al. (2003). "NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6)". Am. J. Hum. Genet. 73 (4): 967–71. doi:10.1086/378817. PMC 1180617. PMID 14508710.
  6. "Salmonella infection data for Nipa1". Wellcome Trust Sanger Institute.
  7. "Citrobacter infection data for Nipa1". Wellcome Trust Sanger Institute.
  8. 8.0 8.1 8.2 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x.
  9. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  10. "International Knockout Mouse Consortium".
  11. "Mouse Genome Informatics".
  12. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  13. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  14. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  15. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading