Rifabutin: Difference between revisions

Jump to navigation Jump to search
Line 27: Line 27:


==Mechanisms of Action==
==Mechanisms of Action==
The antibacterial activity of rifamycins relies on the inhibition of bacterial DNA-dependent RNA synthesis.<ref>{{cite journal |author=Calvori, C.; Frontali, L.; Leoni, L.; Tecce, G. |journal=Nature |title=Effect of rifamycin on protein synthesis |volume=207 |pages=417–8 |year=1965 |doi=10.1038/207417a0 |pmid=4957347 |issue=995}}</ref>  This is due to the high affinity of rifamycins to prokaryotic [[RNA polymerase]].  Crystal structure data of the antibiotic bound to RNA polymerase indicates that rifamycin blocks synthesis by causing strong steric clashes with the growing oligonucleotide ("steric-occlusion" mechanism).<ref name="Campbell">{{cite journal|author=Campbell, E.A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., Darst, S.A.|year=2001|title=Structural mechanism for rifampicin inhibition of bacterial RNA polymerase|journal=Cell|volume=104|issue=6|pages=901–12|PMID=11290327|doi=10.1016/S0092-8674(01)00286-0}}</ref><ref name="Feklistov">{{cite journal|author=Feklistov, A., Mekler, V., Jiang, Q., Westblade, L.F., Irschik, H., Jansen, R., Mustaev, A., Darst, S.A., [[Richard H. Ebright|Ebright, R.H.]]|year=2008|title=Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center|journal=Proc Natl Acad Sci USA|volume=105|issue=39|pages=14820–5|PMID=18787125|doi=10.1073/pnas.0802822105}}</ref>  If rifamycin binds the polymerase after the chain extension process has started, no inhibition is observed on the biosynthesis, consistent with a steric-occlusion mechanism.


==References==
==References==

Revision as of 02:19, 31 December 2013


Rifabutin
MYCOBUTIN® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Overdosage
Dosage and Administration
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] ; Associate Editor(s)-in-Chief: Chetan Lokhande, M.B.B.S [2]

Overview

Rifabutin (Rfb) is a bactericidal antibiotic drug primarily used in the treatment of tuberculosis. The drug is a semi-synthetic derivative of rifamycin S. Its effect is based on blocking the DNA-dependent RNA-polymerase of the bacteria. It is effective against Gram-positive and some Gram-negative bacteria, but also against the highly resistant Mycobacteria, e.g. Mycobacterium tuberculosis, M. leprae, and M. avium intracellulare.

Category

Antimycobacterial

US Brand Names

Rifabutin®

FDA Package Insert

Description | Clinical Pharmacology | Microbiology | Indications and Usage | Contraindications | Warnings and Precautions | Adverse Reactions | Overdosage | Dosage and Administration | How Supplied | Labels and Packages

Mechanisms of Action

The antibacterial activity of rifamycins relies on the inhibition of bacterial DNA-dependent RNA synthesis.[1] This is due to the high affinity of rifamycins to prokaryotic RNA polymerase. Crystal structure data of the antibiotic bound to RNA polymerase indicates that rifamycin blocks synthesis by causing strong steric clashes with the growing oligonucleotide ("steric-occlusion" mechanism).[2][3] If rifamycin binds the polymerase after the chain extension process has started, no inhibition is observed on the biosynthesis, consistent with a steric-occlusion mechanism.

References

  1. Calvori, C.; Frontali, L.; Leoni, L.; Tecce, G. (1965). "Effect of rifamycin on protein synthesis". Nature. 207 (995): 417–8. doi:10.1038/207417a0. PMID 4957347.
  2. Campbell, E.A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., Darst, S.A. (2001). "Structural mechanism for rifampicin inhibition of bacterial RNA polymerase". Cell. 104 (6): 901–12. doi:10.1016/S0092-8674(01)00286-0. PMID 11290327.
  3. Feklistov, A., Mekler, V., Jiang, Q., Westblade, L.F., Irschik, H., Jansen, R., Mustaev, A., Darst, S.A., Ebright, R.H. (2008). "Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center". Proc Natl Acad Sci USA. 105 (39): 14820–5. doi:10.1073/pnas.0802822105. PMID 18787125.