Rhabdomyosarcoma differential diagnosis

Jump to navigation Jump to search

Rhabdomyosarcoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Rhabdomyosarcoma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

Staging

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Rhabdomyosarcoma differential diagnosis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Rhabdomyosarcoma differential diagnosis

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Rhabdomyosarcoma differential diagnosis

CDC on Rhabdomyosarcoma differential diagnosis

Rhabdomyosarcoma differential diagnosis in the news

Blogs on Rhabdomyosarcoma differential diagnosis

Directions to Hospitals Treating Rhabdomyosarcoma

Risk calculators and risk factors for Rhabdomyosarcoma differential diagnosis

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Shadan Mehraban, M.D.[2]

Overview

Rhabdomyosarcoma must be differentiated from Ewing sarcoma, Lymphadenopathy, Neuroblastoma, Liposarcoma Osteosarcoma, Lymphoprofilerative disorders. Rhabdomyosarcoma of the orbit must be differentiated from other causes of orbital masses such as orbital pseudotumor, orbital tumors, orbital abscess, and vascular lesions.

Differential Diagnosis

  • Rhabdomyosarcoma must be differentiated from following diseases:
Disease History/demography Symptoms Physical examination Diagnosis
Palpable mass Pain Others Mass tenderness Others Genetics Imaging Histology
Rhabdomyosarcoma[1][2][3][4]
  • Most common soft tissue cancer among children and adolescents
  • The third most common extracranial solid tumors
  • Two-third of all cases happen under 6 years old
+ +
  • Skin changes
  • Respiratory difficulties
  • Vomitting
  • Hematuria
+/-
  • Fever
  • Erythmatous skin
  • Proptosis
  • Ophtalmoplasia
  • Dysconjugate gaze

Mutations in:

CT scan:
  • Soft tissue density
  • Enhancement with contrast
  • Bone destruction

Ultrasound:

  • Well-defined and irregular mass
  • Low to medium echogenicity

MRI:

  • T1:
    • Low to intermediate intensity
    • Hemorrhage areas are poresent in alveolar rhabdomyosarcoma
  • T2:
    • Hyperintense
    • Prominent flow voids are present in extremity lesions of rhabdomyosarcoma
  • T1 C+ (Gd):
    • Considerable enhancement
  • An appearance of round blue cell tumors
  • Myogenesis pathway has various types of differentiation
  • Positive immunohistochemical results for:
    • myoglobin
    • actin
    • desmin
    • Myogenin
Wilms tumor[5][6][7][8][9]
  • Also called nephroblastoma
  • The most common childhood abdominal malignancy
  • Average age of 3.5 years old
+ +
  • Hematuria
  • Respiratory symptoms ( due to lung metastases)
+/-
  • Fever
  • Hypertension/ hypotension
Present mutations of:
  • WT1
  • P53
  • FWT1
  • FWT2 11p15.5 loci
Ultrasound:

CT scan:

Ewing sarcoma[10][11][12][13]
  • Include ewing sarcoma, askin tumor, and peripheral primitive neuroectodermal tumors
  • The second most common childhood malignant primary bone tumors
  • Usually arises in the long bones of the extremities
  • Common age between 10-20 years old
+ + Weight loss/ fatigue +
  • Fever
  • Pathologic fractures
  • Petachia/ purpura
  • Reciprocal translocation between chromosomes 11 and 22
Plain radiographic of region:
  • Poorly marginated destructive lesion
  • Permeative or "moth-eaten" appearance

CT scan:

  • Cortical destruction
  • Demonstrate soft tissue disease

MRI:

  • Considered as a preferred diagnostic study
  • Better shows tumor size/ intraosseous/extraosseous extent
  • Small/ round/ blue cell tumors
  • May be undifferentiated or differentiated,
  • Regular sized primitive appearing cells
Pediatric neuroblastoma [14][15][16][17]
  • Most common extracranial solid tumor of infancy
  • Arising from pluripotent sympathetic cells

Age distribution:

  • < 1 years old ( 40%)
  • 1-2 years old (35%)
  • > 2 years old (25%)

+ (Abdominal)

+
  • Constipation
  • Weakness
  • Diarrhea

+(Abdominal)

  • Proptosis
  • Periorbital ecchymosis
  • Horner syndrome
  • Opsoclonus myoclonus syndrome
  • Chromosome1p deletion
  • N-myc amplification
CT scan:
  • Heterogeneous mass
  • Calcifications
  • Necrotic areas

MRI:

  • T1:
    • heterogeneous mass
  • T2:
    • heterogeneous/ hyperintense
    • cystic/necrotic areas
  • C+ (Gd):
    • Heterogeneous mass
  • Well defined/ infiltrative mass
  • Homer wright rosettes
  • Secretion of vanillylmandelic acid (VMA) and homovanillic acid (HVA)
Pediatric pheochromocytoma[18][19][20][21]
  • Rare catecholamine-secreting tumor
  • Occur in both children and adults
  • Average age of 11 years old
  • Associated with neurofibromatosis, von Hippel-Lindau disease, tuberous sclerosis, Sturge-Weber syndrome, and multiple endocrine neoplasia (MEN) syndromes
- +/-
  • Headache
  • sweating
  • Weakness
  • Convulsion
-
  • Hypertension
  • Tachycardia
  • Pallor face
Genetic mutation in:
  • NF1
  • RET
  • VHL
  • SDHD
  • SDHC
  • EGLN1
  • EGLN2
  • KIF1B
  • SDHAF2
  • TMEM127
  • SDHA
  • IDH1
  • SDHB
  • MAX
  • HIF2A
  • FH
Ultrasound:
  • Different appearance from solid to mixed cystic or solid to cystic

CT scan:

  • Large and heterogenous
  • Calcification
  • Necrosis
  • Cystic changes

MRI (in extra adrenal tumors):

  • T1:
    • Heterogenous enhancement
    • Hypointense
  • T2:
    • Hyperintense
  • T1 C+ (Gd):
    • Heterogenous enhancement
  • Zellballen pattern on microscopy
  • Well-defined clusters
  • Eosinophilic cytoplasm

Positive stains for:

  • Chromogranin for zellballlen cells
  • Neurospecific enolase markers for neuronal cells
  • S-100 protein for sustentacular cells
Pediatric osteosarcoma[22][23][24]
  • The second most common primary bone tumor
  • The third most common tumor among adolescents
  • Can be primary or secondary
  • Primary osteosarcoma occurs in age of 10-20 years old
  • Secondary osteosarcoma occurs in older patients and is secondary to paget disease and bone infarcts
  • Accompanied with positive history of trauma
+ +
  • Soft tissue swelling
  • Fracture
  • Night sweating
+
  • Mass swelling
  • Fever
  • Arthritis
  • Decreased joint range of motion
  • Lymphadenopathy
  • Alteration in retinoblastoma gene (Rb)
Plain radiography:
  • Osteolytic/ osteoblastic feature
  • Periosteum reaction
  • Calcification or ossification

CT scan:

  • Primary lesion and chest CT are required
  • Demonstrate tumor location and extension

MRI:

  • Exact assessment of tumor extension
  • Involving joint to joint findings
  • Contain various cellular pleomorphism and mitoses
  • Poorly trabecular bone formation
  • Fibrocystic and chondroblastic features
Pediatric liposarcoma[25][26][27][28] Considered as a nonrhabdomyosarcoma soft tissue sarcomas

One of the least frequent tumors during childhood

Rarely seen in adolescents and age of < 8 years old

Average age is 50 years among adults

Occur mostly in lower extremities, retroperitoneal region, and shoulder

+ +/-
  • Weight loss
  • Fatigue
-
  • N/A
  • Amplification of 12q13–15 region in MDM2 and CDK4 genes
  • Translocation of t(12;16)(q13;p11.2) in myxoid liposarcoma
CT scan:
  • Inhomogenous fatty structure
  • Tumor mineralization
  • Cortical bone erosion
  • Calcification
  • Infiltration to medistinum

MRI:

  • Adipose content mass
  • Thin irregular septa
  • Hemorrhage
  • Necrosis areas
Divided into following subtypes:
  • Well-differentiated
  • Dedifferentiated, Myxoid/roundcell
  • Pleomorphic

Common findings:

  • Lipoblasts presence
  • Cytoplasmic lipid vacuoles
  • Chromatin spikes
Pediatric acute myelocystic leukemia[29][30][31][32]
  • Replacement of normal bone marrow cells with abnormal cells
  • Myeloblast is malignant cell
  • Wide distribution among childhood to adults
  • Survival rate of 60%
  • Common in down syndrome
+/- ( Abdominal mass, mediastinal mass) + (bone pain, joint pain)
  • Bleeding
  • Infectious
+/-
  • Lymphadenopathy
  • Hepatosplenomegaly
  • Bruising
  • Petechiae
  • Pallor face
  • Anemia
  • Fever
Genetic translocations include:
  • t(8;21)
  • t(3;21)
  • t(15;17)
Radiography:
  • Chest radiography:
    • Diagnosis of mediastinal mass
  • Extremities radiography:
    • Metaphyseal bands
    • Lytic lesions
    • New periosteal bone formation
    • Pathologic fractures

CT scan/ MRI:

  • Thickening/ edema of the bowel wall in presence of abdominal pain or bowl infection
  • Detection of early sinusitis
  • Intracranial hemorrhage in presence of neurological symptoms

Radionuclide imaging:

  • Detection of occult infection
  • Hyperplastic bone marrow with leukemia cells replacement
  • Megaloblastic feature
  • decrease in normal hematopoietic cell
Pediatric acute lymphoblastic leukemia[33][34]
  • The most common malignancy among children
  • Few cases may associated with down syndrome, wiskott-aldrich syndrome, andataxia-telangiectasia
  • Peak age of 2-5 years old
  • Previous history of cancer/ drug exposure
  • Bone marrow replaced with malognant lymphoblasts

+/-( Extramedullary masses in abdomen/ head/neck)

+/- (Musculoskeletal pain)
  • Weakness
  • Fatigue
  • Weight loss
  • Bleesing
- Chromosomal translocations:
  • t(9;22)
  • t(12;21)
  • t(5;14)
  • t(1;19)
Radiography:

Chest x ray:

  • Nodular masses
  • Central lymphadenopathy

Bone x ray:

  • Radiolucent metaphyseal bands
  • Coarse trabeculation
  • Periosteal reactions
  • Osteopenia

Brain MRI:

  • Leukoencephalopathy
  • Glial cell hyperplasia
  • Meningitis
Divided into 3 subgroups:

L1:

  • Small lymphoblast cells
  • Scant cytoplasm
  • Invisible nucleoli

L2:

  • Larger lymphoblast cells
  • Abundant cytoplasm
  • Prominent nucleoli

L3:

  • Large lymphoblast cells
  • Deep cytoplasmic basophilia
  • Similar to Burkitt lymphoma
Pediatric non-hodgkin lymphoma[35][36][37]
  • Cancer derives from lymphocytes
  • diverse age of incidence
  • Associated with autoimmune disorders, previous cancer therapy, and infection
+ -
  • Lymph node swelling
  • Weight loss
  • Anorexia
  • Abdominal pain

Nausea/ vomitting

+ (Chest tenderness) Fever

Hepatosplenomegaly Lymphadenopathy Seizure Petechiae

Radiography:
  • Chest x ray:
    • Central lymphadenopathy
    • Pleural effusion
    • Pericardial effusion

CT scan:

  • Presence of enlarged lymph node in chest, abdomen, and pelvis

Ultrasound:

  • Hepatosplenomegaly
Histology findings of non-hodgkin lymphoma depend on:
  • Cell differentiation
  • Cell lineage
  • Location of cell origin

References

  1. Egas-Bejar D, Huh WW (2014). "Rhabdomyosarcoma in adolescent and young adult patients: current perspectives". Adolesc Health Med Ther. 5: 115–25. doi:10.2147/AHMT.S44582. PMC 4069040. PMID 24966711.
  2. Dasgupta R, Fuchs J, Rodeberg D (2016). "Rhabdomyosarcoma". Semin Pediatr Surg. 25 (5): 276–283. doi:10.1053/j.sempedsurg.2016.09.011. PMID 27955730.
  3. Park K, van Rijn R, McHugh K (2008). "The role of radiology in paediatric soft tissue sarcomas". Cancer Imaging. 8: 102–15. doi:10.1102/1470-7330.2008.0014. PMC 2365455. PMID 18442956.
  4. Shern JF, Yohe ME, Khan J (2015). "Pediatric Rhabdomyosarcoma". Crit Rev Oncog. 20 (3–4): 227–43. PMC 5486973. PMID 26349418.
  5. Hartman DS, Sanders RC (April 1982). "Wilms' tumor versus neuroblastoma: usefulness of ultrasound in differentiation". J Ultrasound Med. 1 (3): 117–22. PMID 6152936.
  6. De Campo JF (1986). "Ultrasound of Wilms' tumor". Pediatr Radiol. 16 (1): 21–4. PMID 3003660.
  7. Cahan LD (1985). "Failure of encephalo-duro-arterio-synangiosis procedure in moyamoya disease". Pediatr Neurosci. 12 (1): 58–62. PMID 4080660.
  8. Coppes MJ, Pritchard-Jones K (2000). "Principles of Wilms' tumor biology". Urol Clin North Am. 27 (3): 423–33, viii. PMID 10985142.
  9. Davidoff AM (2012). "Wilms tumor". Adv Pediatr. 59 (1): 247–67. doi:10.1016/j.yapd.2012.04.001. PMC 3589819. PMID 22789581.
  10. Burchill SA (2003). "Ewing's sarcoma: diagnostic, prognostic, and therapeutic implications of molecular abnormalities". J Clin Pathol. 56 (2): 96–102. PMC 1769883. PMID 12560386.
  11. Maygarden SJ, Askin FB, Siegal GP, Gilula LA, Schoppe J, Foulkes M; et al. (1993). "Ewing sarcoma of bone in infants and toddlers. A clinicopathologic report from the Intergroup Ewing's Study". Cancer. 71 (6): 2109–18. PMID 8443760.
  12. Panicek DM, Gatsonis C, Rosenthal DI, Seeger LL, Huvos AG, Moore SG; et al. (1997). "CT and MR imaging in the local staging of primary malignant musculoskeletal neoplasms: Report of the Radiology Diagnostic Oncology Group". Radiology. 202 (1): 237–46. doi:10.1148/radiology.202.1.8988217. PMID 8988217.
  13. Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H; et al. (2018). "Ewing sarcoma". Nat Rev Dis Primers. 4 (1): 5. doi:10.1038/s41572-018-0003-x. PMID 29977059.
  14. Lonergan GJ, Schwab CM, Suarez ES, Carlson CL (2002). "Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation". Radiographics. 22 (4): 911–34. doi:10.1148/radiographics.22.4.g02jl15911. PMID 12110723.
  15. Golden CB, Feusner JH (2002). "Malignant abdominal masses in children: quick guide to evaluation and diagnosis". Pediatr Clin North Am. 49 (6): 1369–92, viii. PMID 12580370.
  16. Angstman KB, Miser JS, Franz WB (1990). "Neuroblastoma". Am Fam Physician. 41 (1): 238–44. PMID 2403727.
  17. Musarella MA, Chan HS, DeBoer G, Gallie BL (1984). "Ocular involvement in neuroblastoma: prognostic implications". Ophthalmology. 91 (8): 936–40. PMID 6493702.
  18. Leung K, Stamm M, Raja A, Low G (2013). "Pheochromocytoma: the range of appearances on ultrasound, CT, MRI, and functional imaging". AJR Am J Roentgenol. 200 (2): 370–8. doi:10.2214/AJR.12.9126. PMID 23345359.
  19. Stein PP, Black HR (1991). "A simplified diagnostic approach to pheochromocytoma. A review of the literature and report of one institution's experience". Medicine (Baltimore). 70 (1): 46–66. PMID 1988766.
  20. Bravo EL (1991). "Pheochromocytoma: new concepts and future trends". Kidney Int. 40 (3): 544–56. PMID 1787652.
  21. Bravo EL (1991). "Pheochromocytoma: new concepts and future trends". Kidney Int. 40 (3): 544–56. PMID 1787652.
  22. Dorfman HD, Czerniak B (1995). "Bone cancers". Cancer. 75 (1 Suppl): 203–10. PMID 8000997.
  23. Yarmish G, Klein MJ, Landa J, Lefkowitz RA, Hwang S (2010). "Imaging characteristics of primary osteosarcoma: nonconventional subtypes". Radiographics. 30 (6): 1653–72. doi:10.1148/rg.306105524. PMID 21071381.
  24. Araki N, Uchida A, Kimura T, Yoshikawa H, Aoki Y, Ueda T; et al. (1991). "Involvement of the retinoblastoma gene in primary osteosarcomas and other bone and soft-tissue tumors". Clin Orthop Relat Res (270): 271–7. PMID 1884549.
  25. Shmookler BM, Enzinger FM (1983). "Liposarcoma occurring in children. An analysis of 17 cases and review of the literature". Cancer. 52 (3): 567–74. PMID 6861094.
  26. Marcus KC, Grier HE, Shamberger RC, Gebhardt MC, Perez-Atayde A, Silver B; et al. (1997). "Childhood soft tissue sarcoma: a 20-year experience". J Pediatr. 131 (4): 603–7. PMID 9386667.
  27. Murphey MD, Arcara LK, Fanburg-Smith J (2005). "From the archives of the AFIP: imaging of musculoskeletal liposarcoma with radiologic-pathologic correlation". Radiographics. 25 (5): 1371–95. doi:10.1148/rg.255055106. PMID 16160117.
  28. Italiano A, Cardot N, Dupré F, Monticelli I, Keslair F, Piche M; et al. (2007). "Gains and complex rearrangements of the 12q13-15 chromosomal region in ordinary lipomas: the "missing link" between lipomas and liposarcomas?". Int J Cancer. 121 (2): 308–15. doi:10.1002/ijc.22685. PMID 17372913.
  29. Yamamoto JF, Goodman MT (2008). "Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997-2002". Cancer Causes Control. 19 (4): 379–90. doi:10.1007/s10552-007-9097-2. PMID 18064533.
  30. Cancer Genome Atlas Research Network. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ; et al. (2013). "Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia". N Engl J Med. 368 (22): 2059–74. doi:10.1056/NEJMoa1301689. PMC 3767041. PMID 23634996.
  31. Islam A, Catovsky D, Goldman JM, Galton DA (1985). "Bone marrow biopsy changes in acute myeloid leukaemia. I: Observations before chemotherapy". Histopathology. 9 (9): 939–57. PMID 3864727.
  32. Orazi A (2007). "Histopathology in the diagnosis and classification of acute myeloid leukemia, myelodysplastic syndromes, and myelodysplastic/myeloproliferative diseases". Pathobiology. 74 (2): 97–114. doi:10.1159/000101709. PMID 17587881.
  33. Zuckerman T, Rowe JM (2014). "Pathogenesis and prognostication in acute lymphoblastic leukemia". F1000Prime Rep. 6: 59. doi:10.12703/P6-59. PMC 4108947. PMID 25184049.
  34. Pui CH, Robison LL, Look AT (2008). "Acute lymphoblastic leukaemia". Lancet. 371 (9617): 1030–43. doi:10.1016/S0140-6736(08)60457-2. PMID 18358930.
  35. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL; et al. (2013). "Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma". Blood. 121 (9): 1604–11. doi:10.1182/blood-2012-09-457283. PMC 3587323. PMID 23297126.
  36. Sandlund JT (2015). "Non-Hodgkin Lymphoma in Children". Curr Hematol Malig Rep. 10 (3): 237–43. doi:10.1007/s11899-015-0277-y. PMID 26174528.
  37. El-Galaly TC, Hutchings M (2015). "Imaging of non-Hodgkin lymphomas: diagnosis and response-adapted strategies". Cancer Treat Res. 165: 125–46. doi:10.1007/978-3-319-13150-4_5. PMID 25655608.

Template:WH Template:WS