Non-Hodgkin lymphoma pathophysiology

Jump to navigation Jump to search

Non-Hodgkin lymphoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Non-Hodgkin's Lymphoma

Differentiating Non-Hodgkin Lymphoma from Other Diseases
Differentiating Types of Non-Hodgkin's Lymphoma

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

Staging

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Ultrasound

Biopsy

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Non-Hodgkin lymphoma pathophysiology On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Non-Hodgkin lymphoma pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Non-Hodgkin lymphoma pathophysiology

CDC on Non-Hodgkin lymphoma pathophysiology

Non-Hodgkin lymphoma pathophysiology in the news

Blogs on Non-Hodgkin lymphoma pathophysiology

Directions to Hospitals Treating Non-Hodgkin lymphoma

Risk calculators and risk factors for Non-Hodgkin lymphoma pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Preeti Singh, M.B.B.S.[2]

Overview

Non Hodgkin's Lymphoma (NHL) represents a heterogeneous group of diseases with varied clinical presentation and histological appearance.It arises from cell of the lymphoid system, tumors are mainly derived from B lymphocytes, but are also from T lymphocytes, or natural killer cells. Lymphomas rise from different stages of B and T cell differentiation. Aberrations in the tightly controlled steps of B cell development can lead to oncogenesis. These aberrations are mainly seen in form of chromosomal translocation. About 85% of NHL's are of B-cell origin and only 15% are derived from T/NK cells. Two specific lymphomas, follicular lymphoma and diffuse large B cell lymphoma, account for about 65% of all non-Hodgkin lymphomas.

Pathophysiology

  • About 85% of NHLs are of B-cell origin and only 15% are derived from T/NK cells.[1]
  • The small remainder stem from macrophages.
  • These tumors are characterized by the level of differentiation, the size of the cell of origin, the origin cell's rate of proliferation, and the histologic pattern of growth.
  • Lymphomas of small lymphocytes generally have a more indolent course than those of large lymphocytes, which may have intermediate-grade or high-grade aggressiveness.
  • Two specific lymphomas, follicular lymphoma and Diffuse Large B Cell Lymphoma, account for about 65% of all non-Hodgkin lymphomas.
  • The gene-expression profiles of almost all non-Hodgkin lymphomas are a reflection of the equivalent healthy cell of origin from which the lymphoma is derived.[1]
  • Follicular lymphoma most commonly results from the t(14;18)(q32;q21) translocation; this translocation places BCL2 (which encodes B-cell CLL/lymphoma 2) under control of the IGH enhancer element, leading to constitutive BCL2 expression.[2]
  • BCL-2 is an anti-apoptotic protein, and the t(14;18)(q32;q21) translocation results in markedly elevated expression of BCL-2, which blocks the healthy germinal center default programme of apoptotic cell death and represents a defi ning pathogenic feature of follicular lymphoma.[2][3]
  • Similarly, mantle cell lymphoma is characterised by the t(11;14)(q13;q32) translocation, which leads to the deregulated expression of cyclin D1.[4]
  • Moreover, Burkitt lymphoma overexpresses MYC as a result of the t(8;14)(q24;q32) translocation or variants.
  • Recurrent translocations are less common in peripheral T-cell lymphomas than in other types of lymphoma, and examples include the characteristic t(2;5) (p23;q35) translocation seen in anaplastic lymphoma kinase (ALK)-positive anaplastic T-cell lymphoma and the t(5;9)(q33;q22) translocation associated with follicular T-cell lymphoma.[5]
  • Recurrent translocations including t(6;7) (p25;q32) and recurrent gene fusions involving the tumour-suppressor gene TP63 are characteristic of ALK-negative anaplastic T-cell lymphoma.[5][6]

Genetics

The development of Non-Hodgkin lymphoma is the result of multiple genetic mutations such as:[7][8]

  • Mutations of the B-cell receptor genes and NFKB pathway
  • RNA splicing mutations in the small lymphocytic lymphoma
  • Genetic mutations in histone formation:[9]
    • MLL2
    • MEF2B
    • EZH2
    • CREBBP
    • EP300
    • MLL2
    • KMT2D
  • Mutations in CDKN2A alters cell cycle control and affects JAK–STAT signalling.
  • Upregulation of key signalling pathways such as CD79B, MYD88, CARD11.
  • Block to terminal differentiation such as BCL6 translocations and loss of PRDM1.

Associated Conditions

Gross Pathology

Microscopy Pathology

References

  1. 1.0 1.1 Morton LM, Zheng T, Holford TR, Holly EA, Chiu BC, Costantini AS; et al. (2005). "Alcohol consumption and risk of non-Hodgkin lymphoma: a pooled analysis". Lancet Oncol. 6 (7): 469–76. doi:10.1016/S1470-2045(05)70214-X. PMID 15992695.
  2. 2.0 2.1 Wang SS, Flowers CR, Kadin ME, Chang ET, Hughes AM, Ansell SM; et al. (2014). "Medical history, lifestyle, family history, and occupational risk factors for peripheral T-cell lymphomas: the InterLymph Non-Hodgkin Lymphoma Subtypes Project". J Natl Cancer Inst Monogr. 2014 (48): 66–75. doi:10.1093/jncimonographs/lgu012. PMC 4155466. PMID 25174027.
  3. Morton LM, Slager SL, Cerhan JR, Wang SS, Vajdic CM, Skibola CF; et al. (2014). "Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project". J Natl Cancer Inst Monogr. 2014 (48): 130–44. doi:10.1093/jncimonographs/lgu013. PMC 4155467. PMID 25174034.
  4. Tamaru JI (2017). "2016 revision of the WHO classification of lymphoid neoplasms". Rinsho Ketsueki. 58 (10): 2188–2193. doi:10.11406/rinketsu.58.2188. PMID 28978864.
  5. 5.0 5.1 Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R; et al. (2016). "The 2016 revision of the World Health Organization classification of lymphoid neoplasms". Blood. 127 (20): 2375–90. doi:10.1182/blood-2016-01-643569. PMC 4874220. PMID 26980727.
  6. Matutes E (2018). "The 2017 WHO update on mature T- and natural killer (NK) cell neoplasms". Int J Lab Hematol. 40 Suppl 1: 97–103. doi:10.1111/ijlh.12817. PMID 29741263.
  7. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A; et al. (2011). "Analysis of the coding genome of diffuse large B-cell lymphoma". Nat Genet. 43 (9): 830–7. doi:10.1038/ng.892. PMC 3297422. PMID 21804550.
  8. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C; et al. (2012). "Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing". Proc Natl Acad Sci U S A. 109 (10): 3879–84. doi:10.1073/pnas.1121343109. PMC 3309757. PMID 22343534.
  9. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL; et al. (2013). "Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma". Blood. 121 (9): 1604–11. doi:10.1182/blood-2012-09-457283. PMC 3587323. PMID 23297126.


Template:WikiDoc Sources